期刊文献+

正则地稳定环和模的稳定同构(英文) 被引量:2

Regularly Stable Rings and Stable Isomorphism of Modules
在线阅读 下载PDF
导出
摘要 设R是一个含幺结合环 .如果任意两个稳定同构的有限生成投射R 模均是同构的 ,则称R是强Hermitian环 ;如果对任意正则元a ,b∈R且aR+bR =R ,均存在y∈R使得a+by可逆 ,则称R是正则地稳定环 .本文证明了环R是强Hermitian环 ,当且仅当对任意自然数n有Mn(R)是正则地稳定环 . A ring R is defined to be strong Hermitian if a ny two stablely isomorphic finitely generated projective R-module s are isomorphic; and to be regularly stable if for any regular elements a a nd b in R, aR+bR=R implies that there exists y∈R such that a+by is invertible. It is proved that R is strong Hermitian iff M n (R) i s regularly stable for any natural integer n. Some characterizations of reg ularly stable rings are given.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2003年第1期1-8,共8页 JUSTC
关键词 K0群 模的稳定同构 内消去性 正则地稳定环 K 0 group stable isomorphism of module s internal-cancellation property regularly stable rings CLC number:O153 Document code:A AMS Subject Classifications (2000): 19A13
  • 相关文献

参考文献10

  • 1[1]Lam T Y. Serre' s Conjecture [ M ]. Berlin:Springer-Verlag, 1978. 23-33.
  • 2[2]Lam T Y. A First Course in Noncommutative Rings [ M]. Berlin: Springer-Verlag, 1997.
  • 3[3]Rosenberg J. Algebraic K-theory and its applications [M]. New York: Springer-Verlag,1996. 1-58.
  • 4[4]Vaserstein L N. Bass's first stable range condition [J]. J. of Pure and Appl. Algebra,1984, 34: 319-330.
  • 5[5]Vaserstein L N. Stable rank of rings and dimensionality of topological spaces [ J ]. Functional Anal. Appl. , 1971, (5): 102-110.
  • 6[6]Silvester J R. Introduction to Algebraic K-Theory [M]. Chapman Hall: Springer-Verlag,1981.
  • 7[7]Wu Tong-suo and Xu Yong-hua. On the stable range condition of exchange rings [J].Comm. Algebra, 1997, 25 (7): 2355-2363.
  • 8[8]Jacobson N. Basic Algebra Ⅱ [M]. W H Freeman: Springer-Vedag, 1989.
  • 9[9]Swan R G. Vector bundles and projective modules [ J ]. Transaction of American Mathematics Society, 1962, 105: 264-277.
  • 10郭学军,宋光天.On Diagonalization of Idempotent Matrices over APT Rings[J].Journal of Mathematical Research and Exposition,2001,21(1):21-26. 被引量:1

二级参考文献6

  • 1[1]ROSENBERG J. Algebraic K-Theory and Its Applications [C]. Gradudate Texts in Mathe matics 147, Springer-Verlag, 1995.
  • 2[2]MCDONALD B R. Linear Agebra over Commutative Rings [M]. Marcel Dekker, 1984.
  • 3[3]STEGER A. Diagonability of idempotent matrices [J]. Pac. J. Math., 1966, 19(3): 535-541.
  • 4[4]ARA P, GOODEARL K R, O'MEARA K C et. al. Diagonalization of matrices over regular rings [J]. Lin.Alg. Appl. 1997, 265: 136-147.
  • 5[5]LAM T Y. Serre's Conjecture [M]. Lecture Notes in Mathematics 635, Springer-Verlag, 1978.
  • 6[6]ANDERSON F And FULLER K. Rings and Categories of Modules [M]. Springer-Verlag, 1974.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部