摘要
从双曲两步热传导模型出发,运用数值差分法求解了微尺度条件下热传递问题。利用特征值法对耦合的能量方程解耦,得到一组控制薄膜中的热波传播的特征方程,对特征方程组运用Godunov格式进行离散得到特征方程组的解。通过特征方程和原控制方程之间的关系,得到薄膜的温度响应并运用这种方法求解了薄膜的激光加热问题,揭示了在短脉冲激光加热条件下薄膜中热传递的波特性以及金属薄膜中电子气和晶格温度的非平衡态特征。
A finite-difference algorithm is presented for the solution of hyperbolic two-step heat conduction model.The uncoupled characteristic equations are derived from the governing equations of the temperature in the metal film,the Godunov scheme is applied to solve the characteristic equations,and the thermal responses are obtained from the relationship between the characteristic equations and the governing equations.Two examples are calculated at the last part of this pa-per,the results show a salient wave nature of the thermal transfer and the nonequilibrium be-tween the electrons gas and the lattice during the heating process.
出处
《微纳电子技术》
CAS
2003年第1期15-18,29,共5页
Micronanoelectronic Technology
基金
国家自然科学基金资助项目(10132010)