期刊文献+

碳纳米管的制备及其用于甲醇气相羰基化催化性能 被引量:7

The preparation of carbon nanotubes and its catalytic performance for methanol vapor-phase carbonylation
在线阅读 下载PDF
导出
摘要 实验发现采用LaFeO3 催化剂乙炔在氢气与氮气气氛中裂解产物完全不同。在反应温度 973K ,氮气气氛下 ,乙炔在催化剂上裂解为碳纳米管 ,平均管径为 30nm ,管径比较均匀 ;在氢气气氛中乙炔主要在热电偶上裂解为碳纤维 ,直径平均为 6 0 0nm左右。采用碳纳米管作催化载体制备的硫化Mo/CNT催化剂 ,比相同条件下碳纤维作载体制得的Mo/CT催化剂甲醇气相羰基化活性高 2~ 3倍 ;在反应温度 5 73K、空速 96 0 0L/kg/h时 ,醋酸甲酯选择性为 76 2 %,此时TOF值最大达到 1 74mol醋酸 /molMo/h。对硫化的Mo/CNT催化剂的TEM图观察发现 ,催化剂颗粒负载在碳纳米管外壁上 ,催化剂颗粒直径平均 10nm。 The effects of reaction atmosphere (hydrogen or nitrogen) on catalytic decomposition of C 2H 2 were investigated. The results showed that the carbon nanotubes (CNTs) were obtained using LaFeO 3 catalyst in the nitrogen atmosphere at 973 K; and they were multi-walled nanotubes of good quality with average diameter 30 nm. While the carbon fibers (CF) with average diameter 600 nm were obtained in the hydrogen at the same conditions. A novel sulfided Mo/CNTs catalyst has a 2~3 times higher activity for methanol vapor-phase carbonylation than the sulfided Mo/CF catalyst. The carbonylation conditions on the sulfided Mo/CNTs catalyst are optimized as follows: reaction temperature of 573 K and carbon monoxide space velocity of 9600L/kg cat/h. Under the optimum conditions, carbonylation selectivity of 76.2mol% and turnover frequency of 1.74 mol AcOMe/molMo.h are obtained. The morphological structures of the sulfided Mo/CNTs catalyst were examined by TEM. The results indicated that the catalyst particles were supported at the outer walls of carbon nanotubes; and the average diameter of particles was 10 nm.
出处 《天然气化工—C1化学与化工》 CAS CSCD 北大核心 2002年第6期1-5,共5页 Natural Gas Chemical Industry
基金 国家自然科学基金资助项目 (No .2 990 30 0 3)
关键词 制备 气相羰基化 催化性能 碳纳米管 铁酸镧 负载型催化剂 甲醇 载体 一氧化碳 乙炔 催化裂解 carbon nanotube LaFeO 3 catalyst methanol vapor-phase carbonylation
  • 相关文献

参考文献8

二级参考文献28

  • 1李泉,曾广赋,席时权.纳米粒子[J].化学通报,1995(6):29-34. 被引量:143
  • 2余荣清,程大典,詹梦熊,王育煌,郑兰荪.液相化学腐蚀法用于碳纳米管的纯化及顶端开口研究[J].化学通报,1996(4):25-26. 被引量:16
  • 3Iijima S. Nature, 1991,354(6348),56.
  • 4Li W. Z., Xie S. S., Qian L. X. et al Science, 1996, 274,1701.
  • 5Xu D. S., Guo G. L., Gui L.L. et al Appl. Phys. Lett.,1999, 75, 48.
  • 6Ebbesen T. W., Hiura H., Fujita J. et al Chem. Phys. Lett.,1993, 209( 1-2), 83.
  • 7Amelinckx S., Zhang X. B., Bernaerts D. et al Science,1994, 265,635.
  • 8Guo T., Nikolaev P., Rinzler A. G. et al J. Phys. Chem.,1995, 99(27), 10694.
  • 9Kukovitskii E. F., Chernozatonskii L. A., Lvov S.G. et alChem. Phys. Lett., 1997, 266(3-4), 323.
  • 10YANG Zi-Qing(杨子芹),SHENG Zeng-Ming(沈曾民),CHEN Xiao-Hong(陈晓红)et al Xinxing Tancailiao ( NewCarbon Mater), 2000, 15 (2), 34.

共引文献47

同被引文献69

引证文献7

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部