期刊文献+

LightGBM+CatBoost+XGBoost集成学习加权融合的室内指纹定位算法

Indoor Fingerprint Positioning Algorithm Based on Weighted Fusion of Ensemble Learning with LightGBM+CatBoost+XGBoost
在线阅读 下载PDF
导出
摘要 针对WiFi室内指纹定位中指纹库易受环境变化影响、定位精度低等问题,提出了一种LightGBM+CatBoost+XGBoost集成学习加权融合的室内指纹定位算法。在离线阶段,采用基于中位数绝对偏差的Boxplot滤波,有效过滤了指纹库中的异常值。然后对过滤后指纹库的缺失值,采用了K近邻(K-nearest neighbors,KNN)填补指纹库中缺失值,确保指纹库的稳定性。在在线阶段,结合LightGBM(light gradient boosting machine)、CatBoost(categorical boosting)和XGBoost(extreme gradient boosting)3种集成学习模型,通过混沌自适应JAYA算法动态调整模型权重,构建加权融合的坐标预测模型。实验结果表明,提出算法的平均定位误差为1.38 m,相较于粒子群优化(particle swarm optimization,PSO)-极限学习机(extreme learning machine,ELM)、KNN、LightGBM、CatBoost、XGBoost和KNN+XGBoost算法降低了6.52%~37.7%,为室内定位提供了一种精确且鲁棒的解决方案。 To address the issues of fingerprint database vulnerability to environmental changes and low positioning accuracy in WiFi indoor fingerprinting localization,an indoor fingerprinting localization algorithm based on the weighted fusion of LightGBM,CatBoost,and XGBoost ensemble learning was proposed.In the offline phase,a Boxplot filter based on median absolute deviation was used to effectively filter out outliers from the fingerprint database.The missing values in the filtered fingerprint database were then imputed using KNN(K-nearest neighbors),ensuring the stability of the fingerprint database.In the online phase,three ensemble learning models:LightGBM(light gradient boosting machine),CatBoost(categorical boosting),and XGBoost(extreme gradient boosting):were combined.The chaotic adaptive JAYA algorithm was used to dynamically adjust model weights,constructing a weighted fusion coordinate prediction model.Experimental results show that the proposed algorithm achieves an average positioning error of 1.38 m,reducing the error by 6.52%to 37.7%compared to PSO(particle swarm optimization)-ELM(extreme learning machine),KNN,LightGBM,CatBoost,XGBoost,and KNN+XGBoost algorithms,providing a robust and accurate solution for indoor positioning.
作者 郑新鹏 张烈平 陈耀 张翠 ZHENG Xin-peng;ZHANG Lie-ping;CHEN Yao;ZHANG Cui(Key Laboratory of Advanced Manufacturing and Automation Technology,Guilin University of Technology,Education Department of Guangxi Zhuang Autonomous Region,Guilin 541006,China;Guangxi Key Laboratory of Special Engineering Equipment and Control(Guilin University of Aerospace Technology),Guilin 510046 China;School of Information Engineering,Nanning College of Technology,Guilin 541006,China)
出处 《科学技术与工程》 北大核心 2025年第30期12982-12990,共9页 Science Technology and Engineering
基金 国家自然科学基金(61741303) 广西自然科学基金(2025GXNSFAA069942) 广西空间信息与测绘重点实验室基金项目(21-1238-21-16) 广西研究生教育创新计划(YCSW2025411)。
关键词 室内指纹定位 Boxplot滤波 K近邻填补 集成学习 混沌自适应JAYA算法 indoor fingerprint positioning Boxplot filtering K-nearest neighbors imputation ensemble learning chaotic adaptive JAYA algorithm
作者简介 第一作者:郑新鹏(2000—),男,汉族,河南南阳人,硕士研究生。研究方向:室内定位、传感器与智能信息处理技术。E-mail:2120231396@glut.edu.cn;通信作者:张翠(1985—),女,汉族,湖南衡阳人,硕士,副教授。研究方向:传感器与智能信息处理技术。E-mail:18172686917@163.com。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部