期刊文献+

低分辨率视频图像关键帧异常行为识别

Identification of Abnormal Behavior in Key Frames of Low-Resolution Video Images
在线阅读 下载PDF
导出
摘要 低分辨率视频因像素密度低,关键帧细节被平均化,难以捕捉人体行为边缘轮廓的细微变化,导致行为特征区分度不足,使得难以清晰区分正常与异常行为。为此,提出低分辨率视频图像关键帧异常行为识别方法。对低分辨率视频图像展开增强,以提高像素密度,提取增强后视频图像的前景,并根据提取结果有效确定视频图像中的关键帧,获取关键帧图像内行人目标的边缘轮廓特征,从而确保视频图像质量能够保留足够的细节,提高行为特征区分度,以便清晰地捕捉和区分人体动作的细微变化,提高异常行为识别的准确性。将获取的边缘轮廓特征作为支持向量机的输入,对人体行为特征实施精准分类,以此完成低分辨率视频内人体异常行为的有效识别。实验结果表明,利用上述方法开展低分辨率视频异常行为识别时,识别精度高、效果好。 Due to the low pixel density of low-resolution video,the details of keyframes are averaged out,and it is difficult to capture the subtle changes in the edge contours of human behavior,resulting in insufficient differentiation of behavioral features and making it difficult to clearly distinguish normal and abnormal behavior.For this reason,the key frame abnormal behavior recognition method is proposed for low-resolution video images.En⁃hancement of low-resolution video images is carried out to improve the pixel density,extract the foreground of the en⁃hanced video images,effectively determine the keyframes in the video images according to the extraction results,and obtain the edge contour features of the pedestrian target in the keyframes,so as to ensure that the quality of the video images retains sufficient details,improve the differentiation of behavioral features,so as to clearly capture and distin⁃guish the subtle changes in human movements,and improve the accuracy of the recognition of abnormal behaviors.The obtained edge contour features are used as inputs to the support vector machine to accurately classify the human behavioral features,so as to complete the effective identification of abnormal human behaviors in low-resolution vide⁃os.The experimental results show that the above method is highly accurate and effective in identifying abnormal be⁃haviors in low-resolution videos.
作者 杨国萍 侯庆 蓝善根 YANG Guo-ping;HOU Qing;LAN Shan-gen(Guizhou Communication Industry Service Co.,Ltd.Guizhou Guiyang 550000,China)
出处 《计算机仿真》 2025年第7期533-537,共5页 Computer Simulation
基金 贵州省2023年科技支撑计划项目(黔科合支撑[2023]一般366) 贵州省高层次创新型人才(黔科合平台人才-GCC[2023]101)。
关键词 特征融合 低分辨率视频 分辨率优化 异常行为识别 Feature fusion Low resolution video Resolution optimization Anomalous behavior recognition
作者简介 杨国萍(1991-),男(汉族),贵州贵阳人,硕士,工程师,主要研究领域为计算机视觉;侯庆(1980-),男(汉族),贵州贵阳人,博士,正高级研究员,主要研究方向:机器视觉、行为分析;通讯作者:蓝善根(1982-),男(畲族),贵州贵阳人,博士,高级工程师,主要研究方向:多模态、行为分析。
  • 相关文献

参考文献14

二级参考文献93

  • 1陈波,赖剑煌.基于水平集曲线演化的目标轮廓提取[J].计算机科学,2006,33(8):227-228. 被引量:6
  • 2Zuo L,Niu R X,Varshney P K. A sensor selection approach for target tracking in sensor networks with quantized measurements [C]//Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing. Las Vegas, USA: IEEE, 2008:2521-2524.
  • 3Ikoma N, amaguchi R, Kawano H. Tracking of multiple moving objects in dynamic image of omni directional camera using PHD filter[J]. Journal of Advanced Computational Intelligence and Intelligent Informatics, 2008,12 (1): 167-180.
  • 4Shao Zheng-feng, Zhu Xian-qiang, Yin Cai. An Adapting Object Detection of Infrared Image Based on Optidal Hybrid Threshold Surface[J]. IEEE Xplore Digital Library, 2008(9) : 959-964.
  • 5Li C, Xu C, Gui C, et al. Level set evolution without renitialization-a new variational formulation[J]. The IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, 2005: 430-436.
  • 6Ariel T,Nir S, Yehezkel Y. Perspective shape from shading by fast marching [J]. Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC: IEEE, 2004,1 (1):43-49.
  • 7Zhou L,Zhou J Y. Tracking multiple objects through occlusion with online sampling and position estimation[J]. Pattern Recog nition, 2008,41 (8): 2447-2460.
  • 8林克正,王慧玲,王艳丽.基于边缘检测的焊缝图像的区域分割[J].哈尔滨理工大学学报,2008,13(6):16-18. 被引量:1
  • 9周雪,胡卫明.融合颜色和增量形状先验的目标轮廓跟踪[J].自动化学报,2009,35(11):1394-1402. 被引量:6
  • 10王威,陈益稳,王润生.基于自适应水平集方法的运动目标跟踪[J].计算机科学,2010,37(3):271-274. 被引量:2

共引文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部