期刊文献+

工业机器人执行器故障非线性频谱特性分析

Analysis of nonlinear spectral characteristics of industrial robot actuator failures
在线阅读 下载PDF
导出
摘要 针对当前系统故障诊断研究忽略非线性特性问题,本文旨在分析大型工业机器人系统故障非线性频谱特性。以机器人驱动系统故障引发的整个机器人执行器故障为例,建立大型六关节工业机器人模型,采集电机转速和定子电流分别作为系统输入和输出,利用自适应辨识算法得到系统前4阶NOFRF频谱,分析了不同状态下NOFRF频谱变化规律。实验结果表明,与传统故障特征表征方法相比,NOFRF频谱对状态变化更敏感,而且频谱包含的非线性故障特征更丰富,将其作为故障特征对系统进行诊断可以有效提高诊断准确率。 Aiming at the problem that the current research on system fault diagnosis ignores nonlinear characteristics,this paper analyzes the nonlinear spectral characteristics of faults in large industrial robot systems.Taking the failure of the entire robot actuator caused by the failure of the robot drive system as an example,a large six-joint industrial robot model is established.The motor speed and stator current collected serve as the system input and output respectively.The first four-order NOFRF spectra of the system are obtained by using the adaptive identification algorithm,and variation rules of the NOFRF spectra under different states are analyzed.The experimental results show that compared with traditional methods for characterizing fault features,the NOFRF spectra are more sensitive to state changes,and the spectra contain richer nonlinear fault features.Using them as fault features for system diagnosis can effectively improve the diagnostic accuracy.
作者 张娓娓 陈乐瑞 Zhang Weiwei;Chen Lerui(Henan Polytechnic Institute,Nanyang473000,Henan,China;School of Intelligent Sensing and Instruments,Zhongyuan University of Technology,Zhengzhou 451191,Henan,China)
出处 《船电技术》 2025年第9期30-34,共5页 Marine Electric & Electronic Engineering
基金 河南省自然科学基金面上项目(NO.242300421417)。
关键词 大型机器人系统 非线性频谱 NOFRF Large robot system Nonlinear spectrum NOFRF
作者简介 张娓娓(1985-),女,讲师,研究方向:自动化控制。E-mail:zww801231@163.com。
  • 相关文献

参考文献4

二级参考文献49

  • 1张洪钺,杨萍.基于非线性状态观测器的无刷电机故障诊断[J].电机与控制学报,2006,10(1):4-8. 被引量:6
  • 2杨志峰,翟超,李小兵.感应电机定子绕组缺相故障诊断的仿真与研究[J].大电机技术,2007(5):25-28. 被引量:3
  • 3Nazatul Aini Abd Majid,Mark P. Taylor,John J.J. Chen,Marco A. Stam,Albert Mulder,Brent R. Young.Aluminium process fault detection by Multiway Principal Component Analysis[J].Control Engineering Practice.2010(4)
  • 4Viet Ha Nguyen,Jean-Claude Golinval.Fault detection based on Kernel Principal Component Analysis[J].Engineering Structures.2010(11)
  • 5Chun-Chin Hsu,Mu-Chen Chen,Long-Sheng Chen.Intelligent ICA–SVM fault detector for non-Gaussian multivariate process monitoring[J].Expert Systems With Applications.2009(4)
  • 6Hao Tang,Y.H. Liao,J.Y. Cao,Hang Xie.Fault diagnosis approach based on Volterra models[J].Mechanical Systems and Signal Processing.2009(4)
  • 7Xiaofeng Liu,Lin Ma,Joseph Mathew.Machinery fault diagnosis based on fuzzy measure and fuzzy integral data fusion techniques[J].Mechanical Systems and Signal Processing.2008(3)
  • 8Peiling Cui,Junhong Li,Guizeng Wang.Improved kernel principal component analysis for fault detection[J].Expert Systems With Applications.2006(2)
  • 9Z. Q. Lang,S. A. Billings.Energy transfer properties of non-linear systems in the frequency domain[J].International Journal of Control.2005(5)
  • 10J.A.K. Suykens,J. Vandewalle.Least Squares Support Vector Machine Classifiers[J].Neural Processing Letters.1999(3)

共引文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部