期刊文献+

磨粒几何学建模方法与应用研究进展

Research progress on abrasive geometry modeling and applicati
在线阅读 下载PDF
导出
摘要 磨粒是精密加工领域不可或缺的一部分,对关键零部件的加工至关重要。磨粒的几何学建模是定量描述材料去除过程的关键,对加工过程中的力、热以及表面形貌预测影响显著。然而,现有磨粒建模方法缺乏统一指导,磨粒形状的可控制备仍是亟待解决的难题。本研究基于现有文献分析磨粒几何学建模的研究热点和影响因素,对4种常见磨粒形状的建模方法及其在游离磨料和固结磨料的应用、磨粒形状的可控制备和整形方法进行综述,并从人工智能赋能磨粒几何学建模、磨粒可控制备与整形新技术、磨粒磨损和失效的表征方面对磨粒几何学建模领域的发展进行展望。 Significance:Abrasives are recognized as indispensable in precision machining,and their role in processing critical components has been firmly established.Geometric modeling of abrasives is regarded as essential for quantitative characterization of material removal,as it exerts substantial influence on the prediction of machining forces,thermal effects,and surface roughness.However,consistent guidance on modeling methodologies remains lacking,and controllable fabrication of abrasive geometries has persisted as a critical challenge requiring further investigation.Progress:Abrasives are regarded as fundamental to precision machining and are considered essential for modeling material removal.In prior studies,abrasive geometries have typically been simplified as regular forms,such as spheres,cones,frustums,and truncated polyhedra.However,actual abrasives predominantly exhibit irregular polyhedral shapes,and their interaction mechanisms are not fully represented by these simplified models.To address this limitation,a random plane-cutting method has been developed on the basis of prior studies.In this method,realistic abrasive geometries are generated by intersecting regular shapes with randomly oriented planes,enabling quantitative analysis of material removal and surface roughness.Based on abrasive retention,abrasive machining is commonly categorized as fixed or free abrasive processing.In free abrasive machining,material is removed from the workpiece surface by free abrasives,primarily through lapping and polishing.By contrast,fixed abrasive machining is performed by fixing abrasives within a bond matrix.Although substantial differences exist between these methods in machining mechanisms,abrasive utilization,and fluid requirements,the accuracy of abrasive shape modeling has been shown to exert a significant influence on grinding force,heat generation,and surface roughness.Abrasive preparation is defined as a shape-forming process in which raw abrasives are processed into defined geometries,sizes,and properties to satisfy various industrial requirements.Grinding wheel dressing is recognized as a critical operation to maintain the profile,dimensional accuracy,and surface topography of the grinding wheel,and comprises two primary steps:truing and sharpening.Among these steps,micron-scale truing is conducted at the abrasive level,representing abrasive shaping.At present,abrasive shaping methods based on laser processing and thermochemical graphitization removal are regarded as major research focuses.Conclusions and Prospects:Currently,abrasive geometries are primarily modelled as spheres,cones,frustums,and polyhedral.Abrasive modeling has been extensively applied in precision finishing processes utilizing both free and fixed abrasives.A range of abrasive manufacturing and shaping techniques has been investigated in recent studies,encompassing micro-mould replication,transfer-assisted screen printing,laser cutting,laser micro-structuring,and dressing methods based on the combined action of discharge heat and alternating cutting forces.A new perspective has been introduced through artificial intelligence-based abrasive modeling,and the development of intelligent systems integrating domain knowledge and data should be prioritized in future research.Furthermore,pixel-level recognition of multiple target abrasives in imaging data can be achieved through artificial intelligence algorithms.The integration of artificial intelligence with laser sintering and 3D printing is expected to enable precise fabrication of abrasives with controllable geometries.The implementation of online monitoring techniques facilitates accurate assessment of abrasive wear during machining,thereby providing data to support tool design and optimization.
作者 彭飞 张彦彬 张汝康 崔歆 徐培明 董兰 张效天 宋学磊 李长河 PENG Fei;ZHANG Yanbin;ZHANG Rukang;CUI Xin;XU Peiming;DONG Lan;ZHANG Xiaotian;SONG Xuelei;LI Changhe(Key Lab of Industrial Fluid Energy Conservation and Pollution Control,Ministry of Education,Qingdao University of Technology,Qingdao 266520,Shandong,China;Qingdao HKC Microelectronics Co.,Ltd.,Qingdao 266288,Shandong,China;Taishan Sports Industry Group Co.,Ltd.,Dezhou 253600,Shandong,China;College of Electromechanical Engineering,Qingdao Binhai University,Qingdao 266555,Shandong,China;Qingdao Yuyuan New Materials Co.,Ltd.,Qingdao 266217,Shandong,China;Qingdao Jimo Qingli Intelligent Manufacturing Industry Research Institute,Qingdao 266200,Shandong,China)
出处 《金刚石与磨料磨具工程》 北大核心 2025年第4期427-447,F0003,共22页 Diamond & Abrasives Engineering
基金 国家自然科学基金(52475469,52105457) 山东省自然科学基金(ZR2024ME255,ZR2024QE100) 山东省泰山学者青年专家计划项目(tsqn202211179)。
关键词 磨粒几何学建模 游离磨料 固结磨料 磨粒可控制备 磨粒整形 abrasive particle geometry modeling free abrasives fixed abrasives controlled preparation of abrasive particles abrasive particle shaping
作者简介 通信作者:张彦彬,男,1990年生,博士,教授,博士研究生导师。主要研究方向:绿色磨削与精密加工、智能制造与高端装备、智能农机装备。E-mail:zhangyanbin1_qdlg@163.com,李长河,博士、二级教授、博士生导师,俄罗斯工程院外籍院士、山东省泰山学者特聘专家、山东优秀发明家、山东省优秀科技工作者,中国高被引学者、全球高被引科学家、斯坦福大学终身科学影响力排行榜和2023年度全球前2%顶尖科学家,中国机械工程学会磨粒加工委员会委员,中国机械工程学会光整加工委员会理事,Intelligent and Sustainable Manufacturing创刊主编,Chinese Journal of Mechanical Engineering副主编。主要从事智能与高端装备、准干式制造等方面的研究工作。连续承担国家自然科学基金面上项目5项,国家重点研发计划课题3项,国家机床重大专项课题1项,山东省重大科技创新工程项目1项、山东省重点研发计划4项、山东省自然科学基金4项。其中3项国家自然科学基金面上项目被遴选为机械工程领域国家自然科学基金优秀结题项目。发表SCI/EI收录论文285篇,其中SCI/JCR(1/2区)81篇,入选2022年国内学者学术影响力排行榜第25名(机械工程领域全国仅70人),2023年国内学者学术影响力排行榜第10名(机械工程领域全国仅43人),在国内外同领域具有较高学术地位和知名度。出版专著5部,主编教材9部。获得美国、韩国、澳大利亚等发明专利授权69项,PCT国际专利57项,国家发明专利授权137项,软件著作权59项。获得中国专利优秀奖8项、山东省技术发明1等奖、山东省高等教育教学成果1等奖4项,山东省自然科学2等奖,山东省技术发明2等奖、教育部高等学校科学研究优秀成果2等奖,山东省专利1等奖3项。
  • 相关文献

参考文献50

二级参考文献476

共引文献398

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部