期刊文献+

尺寸和质量约束下AUV性能优化与仿真

Optimization and Simulation of UUV Under Size and Weight Constraints
在线阅读 下载PDF
导出
摘要 [目的]水下无人潜航器(UUV)优化涉及多学科交叉,采用多学科融合的优化方法能够提升UUV总体性能。[方法]分别使用粒子群算法和遗传算法对无人潜航器进行单学科优化,对结果进行分析比较得到单学科优化最优算法,并在此基础上讨论协同优化框架下遗传算法对无人潜航器模型的优化问题。通过迭代优化得到尺寸和质量约束下的性能最优值,并进行物理建模,对优化后的UUV进行仿真分析。[结果]结果表明,协同优化框架下的遗传算法在子系统约束条件下,使UUV质量减小,总体阻力降低了11.17%。[结论]研究成果为UUV总体设计、缩端周期和降低成本等难题的解决奠定了理论基础。 [Purpose]The optimization of underwater unmanned vehicles(UUVs)involves multidisciplinary intersections,and the adoption of a multi-disciplinary integrated optimization method can enhance the overall performance of UUVs.[Method]Particle swarm optimization and genetic algorithms are used separately for single-disciplinary optimization of an unmanned underwater vehicle,and the results are analyzed and compared to obtain the optimal algorithm for single-disciplinary optimization.Based on this,the optimization problem of genetic algorithm for unmanned underwater vehicle models under the collaborative optimization framework is discussed.Iterative optimization is performed to obtain the optimal performance values under size and mass constraints,and physical modeling is conducted for simulation analysis of the optimized UUV.[Result]The results show that the genetic algorithm under the collaborative optimization framework reduces the mass of the UUV and the overall resistance by 11.17%under subsystem constraint conditions.[Conclusion]The research findings lay a theoretical foundation for solving challenges in the overall design,shortening development cycles,and reducing costs of UUVs.
作者 李尚泽 周佳加 许秀军 LI Shangze;ZHOU Jiajia;XU Xiujun(Nanhai Institute of Harbin Engineering University,Sanya 572000,Hainan,China;College of Intelligent Systems Science and Engineering,Harbin Engineering University,Harbin 150000,China;Qingdao Innovation and Development Base,Harbin Engineering University,Qingdao 266000,Shandong,China)
出处 《船舶工程》 北大核心 2025年第S1期812-818,共7页 Ship Engineering
基金 国家自然科学基金资助项目(52101347,51909044)。
关键词 多学科优化 水下无人潜航器 遗传算法 粒子群算法 multidisciplinary optimization underwater unmanned submersible genetic algorithm particle swarm optimization algorithm
作者简介 李尚泽(2000-),男,博士研究生。研究方向:船舶工程,水下无人系统运动控制。E-mail:lishangze@hrbeu.edu.cn。
  • 相关文献

参考文献4

二级参考文献15

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部