期刊文献+

小波分析法在船舶局域网络干扰信息挖掘中的应用

The application of wavelet analysis method in interference information mining of ship local area network
在线阅读 下载PDF
导出
摘要 传统频域滤波与时域分析方法难以有效处理非平稳干扰的时变特性与多源耦合问题。分析船舶局域网络干扰的时域、频域特征,构建基于小波分析的“信号预处理—特征提取—源定位”一体化框架,提出自适应小波阈值去噪算法,提取能量熵、频率重心、时域突变点密度构成多维度特征向量,实现干扰类型的精准分类。结合小波时频局部化特性与TDOA技术,构建干扰源时空定位模型,仿真试验表明,该方法对高斯噪声、脉冲干扰和混合干扰的信噪比提升分别达15.8、18.3、16.2 dB,验证了本文方法的有效性与工程应用价值。 Traditional frequency-domain filtering and time-domain analysis methods are difficult to effectively handle the time-varying characteristics and multi-source coupling problems of non-stationary interference.Analyze the time-domain and frequency-domain characteristics of the interference in the ship's local area network,construct an integrated framework of"signal preprocessing-feature extraction-source location"based on wavelet analysis,propose an adaptive wavelet threshold denoising algorithm,extract energy entropy,frequency center of gravity,and density of time-domain mutation points to form multi-dimensional feature vectors,and achieve precise classification of interference types.By combining the wavelet time-frequency localization characteristics with TDOA technology,a spatio-temporal location model of the interference source was constructed.Simulation experiments show that the signal-to-noise ratio improvement of this method for Gaussian noise,pulse interference and mixed interference reaches 15.8,18.3,16.2 dB respectively,verifying its effectiveness and engineering application value in the mining of interference information in ship networks.
作者 李慧姝 任娟慧 任波 LI Huishu;REN Juanhui;REN Bo(Department of Computer and Information Engineering,Shanxi Institute of Energy,Jinzhong 030600,China;Taiyuan University of Technology,Taiyuan 030024,China;Hydrology and Water Resources Survey Station of Shanxi Province,Taiyuan 030001,China)
出处 《舰船科学技术》 北大核心 2025年第16期173-176,共4页 Ship Science and Technology
基金 山西省教育科学“十四五”规划课题(GH-230252)。
关键词 小波分析 噪声处理 源定位 信息挖掘 wavelet analysis noise processing source localization information mining
作者简介 李慧姝(1981-),女,硕士,副教授,研究方向为人工智能及信息化。
  • 相关文献

参考文献6

二级参考文献62

  • 1周金浛,于劲松,宋悦,梁思远.基于耦合自适应距离的高维异常检测算法[J].仪器仪表学报,2022,43(8):182-192. 被引量:2
  • 2欧阳继红,王仲佳,刘大有.具有动态加权特性的关联规则算法[J].吉林大学学报(理学版),2005,43(3):314-319. 被引量:16
  • 3吴国清,马力.利用辐射噪声多线谱的多普勒进行距离估计[J].声学学报,2006,31(2):140-145. 被引量:25
  • 4Saini H and Garg A K. Protection and restoration schemes in optical networks: a comprehensive survey[J]. International Journal of Microwaves Applications, 2013, 2(1): 5-11.
  • 5Wang A B, Wang N, Yang Y B, et al.. Precise fault location in WDM-PON by utilizing wavelength tunable chaotic laser[J]. Journal of Lightwave Technology, 2012, 30(21): 3420-3426.
  • 6Esmail M A and Fathallah H. Physical layer monitoring techniques for TDM-Passive Optical Networks (PON): a survey[J]. IEEE Communications Surveys and Tutorials, 2013, 15(2): 943-958.
  • 7Li Tong-yan and Li Xing-ming. Novel alarm correlation analysis system based on association rules mining in telecommunication networks[J]. Information Sciences, 2010, 180(16): 2960-2978.
  • 8Cook J, Smith, D and Meier A. Coordinating fault detection, alarm management, and energy efficiency in a large corporate campus[C]. 2012 ACEEE Summer Study on Energy Efficiency in Buildings Pacific Grove, CA, 2012: 83-93.
  • 9Li Tong-yah and Li Xing-ming. A LFP-tree based method for association rules mining in telecommunication alarm correlation analysis[J]. The Journal of China Universities of Posts and Telecommunications 2007, 14(1): 6-15.
  • 10Hubballi N, Biswas S, and Nandi S. Network specific false alarm reduction in intrusion detection system[J]. Security and Communication Networks, 2011, 4(11): 1339-1349.

共引文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部