期刊文献+

三维非等温可压缩向列型液晶流的Serrin准则

A Serrin Criterion for Three-Dimensional Compressible Non-Isothermal Nematic Liquid Crystal Flows
在线阅读 下载PDF
导出
摘要 该文为三维空间中含真空的可压缩非等温向列型液晶流的柯西问题建立了一个爆破准则.通过一些精细的分析,该文深入探究了所研究系统在强耦合与交互作用影响下呈现的结构特性.结果表明,如果密度具有上界,并且速度以及指向场的梯度满足Serrin条件,那么强解是全局存在的.特别地,文中建立的Serrin准则与温度无关,并且它与等熵情形下的准则(Math Methods Appl Sci,2013,36:1363-1375)完全相同. We establish a blow-up criterion for the Cauchy problem of compressible non-isothermal nematic liquid crystal flows with vacuum in R3.It is shown that the strong solution exists globally if the density is bounded from above and the velocity and the gradient of orientation field satisfy the Serrin condition.In particular,our criterion is independent of the temperature and is just the same as that of the isentropic case(Math MethodsAppl Sci,2013,36:1363-1375).This paper presents some delicate analysis to exploit the structural characteristic of the system under consideration due to strong coupling and interplay interaction.
作者 寿晓华 钟新 Shou Xiaohua;Zhong Xin(School of Mathematics and Statistics,Southwest University,Chongqing 400715)
出处 《数学物理学报(A辑)》 北大核心 2025年第4期1058-1076,共19页 Acta Mathematica Scientia
基金 国家自然科学基金(12371227) 重庆市研究生科研创新项目(CYS240128) 中央高校基本科研业务费(SWUKU24001)。
关键词 可压缩非等温液晶流 Serrin型准则 真空 compressible non-isothermal nematic liquid crystal flows Serrin criterion vacuum
作者简介 寿晓华:E-mail:shouxh23@163.com;通讯作者:钟新,E-mail:xzhong1014@amss.ac.cn。
  • 相关文献

参考文献1

二级参考文献13

  • 1Liu X G, Liu L M, Hao Y H. Existence results for the flow of compressible liquid crystals system [EB/OL]. (2011-06-30)[2011-06-30]. http://arixv.org/abs/1106.6140.
  • 2Xin Z P. Blow up of smooth solutions to the compressible Navier-Stokes equation with compact density [J]. Commun Pure Appl Math, 1998, 51:229-240.
  • 3Lions P L. Mathematical topics in fluid dynamics, Vol 2: compressible models [M]. Oxford: Oxford University Press, 1998.
  • 4Feireisl E. Dynamics of viscous compressible fluids [M]. Oxford: Oxford University Press, 2004.
  • 5Cho Y, Kim H. Existence results for viscous polytropic fluids with vacuum [J]. J Dif- ferential Equations, 2006, 228:377-411.
  • 6Cho Y, Choe H, Kim H. Unique solvability of the initial boundary value problems for compressible viscous fluids [J]. J Math Pures Appl, 2004, 83:243-275.
  • 7Huang X D, Xin Z P. A blow-up criterion for classical solutions to the compressible Navier-Stokes equations [EB/OL]. arxiv: 0903.3090v2.
  • 8Fan J, Jiang S. Blow-up criteria for the Navier-Stokes equations of compressible fluids [J]. J Hyperbolic Differential Equations, 2008, 5:167-185.
  • 9Fan J, Jiang S, Ou Y. A blow-up criterion for the compressible viscous heat conductive flows [J]. Annales de l'Institut Henri Poincare Analyses Non Lingaire, 2010, 27:337-350.
  • 10Kim H. A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equa- tions [J]. SIAM J Math Anal, 2006, 37:1417-1434.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部