摘要
核能制氢对于我国实现“碳达峰、碳中和”国家重大战略目标具有重要意义,超高温气冷堆耦合热化学水分解制氢是极具发展前景的大规模绿色制氢方法。在核能制氢系统的研究中,氢气泄漏和扩散行为对于系统安全性的影响是需要重点关注的问题,而核能制氢化工厂与核电站之间的距离是衡量系统安全性的关键指标。本文以核电站与制氢厂的分离距离为研究目标,研究了储氢装置自身条件以及环境参数对氢气泄漏扩散的影响,主要包括罐内压力、罐内容积和环境温度等影响因素。同时结合TNO(The Netherlands Organization)多能法评估了氢气爆炸产生的峰值超压冲击,并预测了避免安全事故所需的最小分离距离。研究结果表明:扩散距离与罐内压力存在线性增加关系,环境温度对扩散距离和各位置氢气浓度影响不明显,而较大的罐内容积会延长泄漏扩散总时间。在本文研究的最恶劣工况下,保守估算的分离距离为253 m。本文研究可以为核能制氢系统的安全风险评估和厂址布局设计提供参考。
[Background]Hydrogen production based on nuclear energy plays a crucial role in achieving national major strategic goals of carbon peaking and carbon neutrality.The high-temperature gas-cooled reactor(HGTR)combined with thermochemical water splitting is considered a promising method for large-scale green hydrogen production.Safety concerns,especially hydrogen leakage and diffusion,are central to the development of nuclear hydrogen production systems.[Purpose]This study aims to investigate how the parameters of hydrogen storage and environmental conditions affect hydrogen leakage,diffusion,and the minimum safe separation distance between hydrogen production plants and nuclear power plants.[Methods]A numerical simulation approach was adopted to assess the leakage and diffusion behavior of hydrogen under various conditions,focusing on three main variables,i.e.internal tank pressure,tank volume,and ambient temperature.Hydrogen release and subsequent diffusion were simulated using a defined range of these parameters to evaluate their effects on gas dispersion.The Netherlands Organization(TNO)multi-energy method was applied to estimating the peak overpressure resulting from potential hydrogen explosions.Based on the overpressure thresholds,the minimum separation distance required to prevent safety accidents was predicted.All simulations were conducted under conservative assumptions to ensure robustness of the results.[Results]The results show a clear linear relationship between internal tank pressure and hydrogen diffusion distance.When the pressure is increased from 1.0 MPa to 3.0 MPa,the diffusion radius is extended from approximately 120 m to over 230 m.The ambient temperature has negligible effects on both the diffusion distance and concentration distribution.However,a larger tank volume significantly prolongs the leakage and diffusion duration.Under the worst-case conditions simulated,the conservative minimum safe separation distance is determined to be 253 m.[Conclusions]The results of this study indicate that internal pressure and tank volume are critical factors influencing hydrogen dispersion risk whilst environmental temperature has limited impact.The findings provide valuable reference data for the safety evaluation and spatial planning of nuclear hydrogen production systems,supporting the development of safe and efficient green hydrogen infrastructure.
作者
高群翔
张梓璇
林祥东
彭威
张平
赵钢
张汉
GAO Qunxiang;ZHANG Zixuan;LIN Xiangdong;PENG Wei;ZHANG Ping;ZHAO Gang;ZHANG Han(China Electric Power Planning and Engineering Institute,Beijing 100120,China;Institute of Nuclear and New Energy Technology,Collaborative Innovation Center of Advanced Nuclear Energy Technology,Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education,Tsinghua University,Beijing 100084,China)
出处
《核技术》
北大核心
2025年第7期161-170,共10页
Nuclear Techniques
基金
国家重点研发计划(No.2022YFB1903000)
国家自然科学基金(No.52176158)
中核领创项目资助。
关键词
核能制氢
泄漏扩散
数值模拟
分离距离
Nuclear hydrogen production
Leakage and diffusion
Numerical simulation
Separation distance
作者简介
第一作者:高群翔,男,1997年出生,2024年于清华大学获博士学位,核科学与技术专业;通信作者:彭威,E-mail:pengwei@tsinghua.edu.cn。