摘要
为提升蒸汽发生器液位监测的实时性与准确性,以保障核动力系统安全运行,提出了主蒸汽管道破裂事故下蒸汽发生器的动态液位预测方法。首先,通过模拟主蒸汽管道破裂工况进行实验,采用AP1000蒸汽发生器缩比建模,结合电动球阀控制与高速相机图像识别,实现了液位与关键热工参数采集;接着,构建了液位时间序列集并进行了小波分解和相关性分析,研究了液位本身的时频特征以及与热工参数之间的关系;最后,建立了基于Informer、深度线性网络(DLinear)的深度学习液位预测模型,并进行了预测结果的对比分析。结果显示,DLinear模型在预测精度与模型鲁棒性方面均优于Informer模型,能更准确地反映液位剧烈波动特征,验证了其在处理长时序依赖问题中的适用性与优势。DLinear模型在均方误差、平均绝对误差和决定系数上较Informer模型分别提升了24.9%、16.0%、9.3%,在±5 mm误差范围内预测准确率达到81.5%,不仅能更好地捕捉液位细节变化,还表现出更强的鲁棒性与泛化能力。研究验证了DLinear模型在液位预测任务中的高效性与工程应用潜力,为核电站事故预警和智能监测提供技术支持。
To enhance the real-time and accurate monitoring of liquid levels in steam generators during main steam pipe rupture accidents,thereby ensuring the safe operation of nuclear power systems,a dynamic liquid level prediction method is proposed.First,experiments simulating main steam pipe rupture conditions are conducted using a scaled model of the AP1000 steam generator.This involves the integration of electric ball valve control and high-speed camera image recognition to collect data on liquid levels and key thermal parameters.Next,a liquid level time series dataset is constructed,followed by wavelet decomposition and correlation analysis to examine the time-frequency characteristics of the liquid level itself and its relationship with thermal parameters.Finally,a deep learning liquid level prediction model based on Informer and DLinear is established to perform a comparative analysis of the prediction results.The results indicate that the DLinear model outperforms the Informer model in terms of prediction accuracy and model robustness,accurately reflecting the characteristics of severe liquid level fluctuations and demonstrating its suitability and advantages in handling long-term sequence dependency issues.The DLinear model improves the mean squared error,mean absolute error,and coefficient of determination by 24.9%,16.0%,and 9.3%,respectively,compared to the Informer model.It achieves a prediction accuracy of 81.5%within a±5 mm error range,capturing detailed changes in liquid levels while exhibiting stronger robustness and generalization ability.This study verifies the efficiency and engineering application potential of the DLinear model in liquid level prediction tasks,providing technical support for accident warnings and intelligent monitoring in nuclear power plants.
作者
殷钰卓
汪标鑫
林梅
王秋旺
YIN Yuzhuo;WANG Biaoxin;LIN Mei;WANG Qiuwang(School of Energy and Power Engineering,Xi’an Jiaotong University,Xi’an 710049,China)
出处
《西安交通大学学报》
北大核心
2025年第8期147-157,共11页
Journal of Xi'an Jiaotong University
基金
热能动力技术重点实验室开放基金资助项目(TPL2022C01)。
作者简介
殷钰卓(2000-),男,硕士生;通信作者:林梅,女,研究员。