期刊文献+

联合UAV-LiDAR点云和SSAFormer的红树林群落精细分类

Combining UAV-LiDAR point clouds and SSAFormer algorithms for fine classification of mangrove communities
原文传递
导出
摘要 红树林是最富有生物多样性、生产力最高的海洋生态系统之一,整合高分辨率遥感影像和深度学习的红树林群落精细分类已成为当前研究的热点和难点。本文提出一种新颖的深度学习分类网络模型一种基于窗口注意力机制和空洞空间的视觉转换器SSAFormer (Swin-Segmentation-Atrous-Transformer)进行红树林群落精细分类。该模型以视觉变压器的变体Swin Transformer为主干网络,在主干网络中加入了卷积神经网络CNN(Convolutional Neural Network)以及空洞空间卷积池化金字塔ASPP (Atrous Spatial Pyramid Pooling)提取更多尺度特征信息,在轻量级解码器中嵌入了特征金字塔FPN (Feature Pyramid Network)结构来融合低层和高层丰富的语义特征信息。本文利用高分七号(Gaofen-7,GF-7)卫星多光谱影像和UAV-LiDAR点云构建了3种主被动遥感数据集,并对比分析SegFormer和本研究改进的Swin Transformer算法的分类结果,进一步论证SSAFormer算法对红树林群落的分类性能。结果表明:(1)与SegFormer相比,SSAFormer实现了红树林的精细分类,总体精度OA (Overall Accuracy)提高了1.77%-5.30%,Kappa系数最高为0.8952,平均用户交并比MIo U (Mean Intersection over Union)最大提升了7.68%;(2)在GF-7多光谱数据集上,SSAFormer算法实现了91%最高总体精度(OA),在UAV-LiDAR数据集上,SSAFormer算法的MIoU提升至57.68%,在加入光谱特征的UAV-LiDAR数据集上,SSAFormer算法MIoU的均值提高了1.48%;(3)UAV-LiDAR数据相比于GF-7多光谱数据的平均用户交并比(MIoU)最大提高了5.35%,总体精度(OA)的均值提升了1.81%,加入光谱特征的UAV-LiDAR数据分类精度(F1-score)提高了2.6%;(4)本研究提出的SSAFormer算法实现了海榄雌的分类精度(F1-score)最高为97.07%,桐花树分类精度(F1-score)达到91.99%,互花米草的F1-score达到93.64%,桐花树的F1-score的平均值在SSAFormer模型上达到了86.91%最高。本研究所提出的SSAFormer算法能够有效提高红树林群落分类精度。 Mangroves are one of the most biodiverse and productive marine ecosystems,and the fine classification of mangrove communities by combining high-resolution remote sensing images and deep learning has become a hot and difficult topic in current research.In this paper,we proposed a novel deep learning classification network model SSAFormer(Swin-Segmentation-Atrous-Transformer)for fine classification of mangrove communities.The SSAFormer used Swin Transformer,a variant of Visual Transformer,as the backbone network.The Atrous Spatial Pyramid Pooling(ASPP)in the Convolutional Neural Network(CNN)architecture was added to the backbone network to extract additional scale feature information.The Feature Pyramid Network(FPN)structure was embedded in the light-weight decoder to fuse the rich semantic feature information of the low and high layers.In this paper,three active and passive feature datasets were constructed based on GF-7 multispectral image and UAV-LiDAR point clouds,and the classification results of the improved Swin Transformer and SegFormer algorithms were compared and analyzed to further demonstrate the classification performance of the SSAFormer algorithm for mangrove communities.Results of the study revealed the followings.(I)Compared with the improved Swin Transformer and SegFormer algorithms,SSAFormer achieved a fine classification of mangroves,with an overall accuracy(OA)increase of 1.77%—5.3%,Kappa up to 0.8952,and a mean intersection over union(MIoU)was improved by 7.68%.(2)On the GF-7 multispectral dataset,the SSAFormer algorithm achieved the highest OA of 91%,and MIoU of the SSAFormer algorithm on the UAV-LiDAR dataset improved to 57.68%on the UAV-LiDAR dataset with the inclusion of spectral features.The mean value of the SSAFormer algorithm MIoU improved by 1.48%.(3)The UAV-LiDAR showed a maximum improvement of 5.35%in MIoU compared with the GF-7 multispectral data,a mean improvement of 1.81%in OA,and an improvement of 2.6%in the classification accuracy(F1-score)of the UAV-LiDAR with the inclusion of spectral features.(4)With the SSAFormer algorithm,the highest classification accuracy(F1-score)of 97.07%was achieved for Avicennia marina,the classification accuracy(F1-score)of Aegiceras corniculatum achieved 91.99%,the classification accuracy(F1-score)of Sporobolus alterniflorus reached 93.64%,and the average value of classification accuracy(F1-score)of A.corniculatum reached the highest 86.91%on the SSAFormer model.The above conclusions proved that the proposed model can effectively improve the classification accuracyofmangrovecommunities.
作者 张书嵘 付波霖 高二涛 贾明明 孙伟伟 武炎 周国清 ZHANG Shurong;FU Bolin;GAO Ertao;JIA Mingming;SUN Weiwei;WU Yan;ZHOU Guoqing(College of Geomatics and Geoinformation,Guilin University of Technology,Guilin 541006,China;Key Laboratory of Wetland Ecology and Environment,Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences,Changchun 130102,China;Department of Geography and Spatial Information Techniques,Ningbo University,Ningbo 31521l,China)
出处 《遥感学报》 北大核心 2025年第5期1140-1163,共24页 NATIONAL REMOTE SENSING BULLETIN
基金 广西自然科学基金(编号:2024GXNSFAA010351,2025GXNSFFA069008) 广西研究生创新计划(编号:YCBZ2024179)。
关键词 遥感 红树林 GF-7多光谱 UAV-LiDAR点云 SSAFormer 深度学习 主被动影像整合 特征选 群落精细分类 remote sensing mangrove GF-7 multispectral UAV-LiDAR point clouds SSAFormer deep learning active and passive image combination feature selection fine classification of community
作者简介 第一作者:张书嵘,研究方向为湿地遥感图像处理与算法开发。E-mail:1020221964glut.edu.cn;通信作者:付波霖,研究方向为湿地精细遥感。E-mail:fubolin@glut.edu.cn。
  • 相关文献

参考文献10

二级参考文献119

共引文献183

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部