期刊文献+

基于机器学习的地质灾害易发性研究——以山东省平邑县为例

Study on the Susceptibility of Geological Hazards Based on Machine Learning——Taking Pingyi County in Shandong Province as an Example
在线阅读 下载PDF
导出
摘要 地质灾害的早期识别和易发生区域的监测是防灾减灾的重要工作。本文以山东省平邑县为研究区域,将GF-1 WFV光学影像、ASTER GDEM地形数据和降水数据融合为多源异构数据,对比了TensorFlow算法、支持向量机和随机森林3种机器学习算法对地质灾害易发性区域的提取效果,提取了研究区2021—2024年同时期地质灾害易发性区域,认为TensorFlow算法、支持向量机和随机森林均能够较好的识别是滑坡易发生区域,其中TensorFlow算法相较于其他方法的分类精度较高,总体精度为82.33%,Kappa系数为0.82。2021—2024年,平邑县易发生地质灾害的区域面积占比为11.5%~12.5%,主要集中在研究区西北的蒙山大洼区、唐村水库南部和九间棚区域。研究成果可为地质灾害易发性区域提取算法的选择和地质灾害预防提供参考。 Early identification of geological disasters and monitoring of easy-happening areas are important work in disaster prevention and reduction.In this paper,taking Pingyi county in Shandong province as the study area,the GF-1 WFV optical image,ASTER GDEM terrain data and precipitation data are fused into multi-source heterogeneous data.The extraction effects of three machine learning algorithms,such as TensorFlow algorithm,support vector machine,and random forest in geological hazard easy-happening areas have been compared.Geological hazard easy-happening areas in the study area from 2021 to 2024 have been extracted.By using TensorFlow algorithm,support vector machine and random forest methods,landslide easy-happening areas can all identified well.compared to other methods,TensorFlow algorithm has a higher classification accuracy with an overall accuracy of 82.33%and a Kappa coefficient of 0.82.From 2021 to 2024,the proportion of geological hazard easy-happening areas in Pingyi county ranged from 11.5%to12.5%.The fluctuations are mainly concentrated in Mengshan Dawa area in the northwest of the study area,the southern part of Tangcun reservoir,and Jiujianpeng area.The research results can provide some references for the selection of extraction algorithms for geological hazard easy-happening areas and the prevention of geological hazards in Pingyi county in Shandong province.
作者 高洪军 卞宝文 王欣瑶 GAO Hongjun;BIAN Baowen;WANG Xinyao(Rizhao Bureau of Natural Resources and Planning,Shandong Rizhao 276800,China;No.1 Exploration Brigade of Shandong Coalfield Geologic Bureau,Shandong Qingdao 266000,China)
出处 《山东国土资源》 2025年第7期33-38,共6页 Shandong Land and Resources
关键词 地质灾害易发性提取 机器学习 多源数据 山东平邑 Geological hazard susceptibility extraction machine learning multi-source data Pingyi county in Shandong province
作者简介 高洪军(1980-),男,山东日照人,高级工程师,主要从事自然资源管理和应用工作,E-mail:ghj-0210@163.com;通信作者:卞宝文(1990-),男,山东日照人,工程师,主要从事测绘工程相关工作,E-mail:173308946@qq.com。
  • 相关文献

参考文献16

二级参考文献244

共引文献265

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部