摘要
现代救援中救援机器人有着非常重要的作用,有效的传感器信息收集和高效的路径规划对于提高救援效率至关重要。本文旨在探讨救援机器人在复杂环境下的路径规划问题,通过分析救援场景的特点,提出了多传感器加粒子滤波算法进行路径规划的框架,将快速随机树算法、人工势场法和粒子滤波算法融合,同时将激光雷达、雷达生命探测仪和红外热成像仪传感器实装到同一个机器人中。该框架利用不同传感器的优势,通过智能算法优化路径规划决策。利用机器学习技术对环境进行动态适应,并将收集到的现场信息传递给救援人员。通过MATLAB上对RRT、APF和PF、EKF算法在偏移误差上进行对比验证,结果表明RRT偏移误差降低19.556%,APF偏移误差降低10.4799%,该方法可以有效提升路径规划的效率和准确性,为救援机器人的实际应用提供了理论依据和技术支撑。
Rescue robot plays a very important role in modern rescue.Effective sensor information collection and efficient path planning are essential to improve rescue efficiency.This paper aims to discuss the path planning problem of rescue robot in complex environments.By analyzing the characteristics of rescue scenes,a path planning framework of multi-sensor fusion particle filter algorithm is proposed,which integrates fast random tree algorithm,artificial potential field method and particle filter algorithm.At the same time,the LiDAR,radar life detector and infrared thermal imager sensors are actually installed in the same robot.The framework utilizes the advantages of different sensors to optimize path planning decisions through intelligent algorithms.Machine learning techniques are utilized to dynamically adapt to the environment and the information collected at the scene is communicated to the rescuers.Comparison of RRT,APF and PF,EKF algorithms in terms of offset error is verified on MATLAB.The results show that the offset error of RRT is reduced by 19.556%and the offset error of APF is reduced by 10.479%.This method can effectively improve the efficiency and accuracy of path planning,and provide theoretical basis and technical support for the practical application of rescue robot.
作者
任启隆
徐媛媛
瞿良玮
杨嘉鹏
Ren Qilong;XuYuanyuan;Qu Liangwei;Yang Jiapeng(Xinjiang Institute of Engineering,Urumqi 830023,Xinjiang,China;Artificial Intelligence and Intelligence Mine Engineering Technology Center,Xinjiang Institute of Engineering,Urumqi 830023,Xinjiang,China)
出处
《新疆农机化》
2025年第3期49-52,57,共5页
Xinjiang Agricultural Mechanization
基金
新疆维吾尔自治区级大学生创新创业训练计划(S202310994012)
新疆工程学院横向课题(2024xgyh1532506)。
关键词
救援机器人
路径规划
多传感器融合
智能算法
应急处理
Rescue robot
Path planning
Multi-sensor fusion
Intelligent algorithm
Emergency treatment
作者简介
通讯作者:徐媛媛。