摘要
                
                    肌电控制是智能假肢研究的重点,其识别算法需要大量的肌电数据支持,而表面肌电信号存在采集困难、数据多样性匮乏及质量不稳定的问题;因此,提出一种基于改进的能量生成对抗网络(EBGAN)的肌电数据增强方法;将卷积神经与EBGAN模型相结合,完成模型改进优化从而模拟原始数据生成过程,并采用动态时间翘曲和信号快速傅里叶变换幅度的均方误差作为评价指标,从时、频两域评估生成数据的真实性;使用支持向量机等模型对合成以及原始数据进行分类识别,验证其有效性;实验证明,改进的EBGAN模型生成的肌电信号与原始信号具有高度相似性,合成数据集显著提升了分类准确率,提升幅度在1%~9%之间;证实了数据增强方法的有效性,为肌电信号的智能化分析和应用提供了新的途径。
                
                Electromyography(EMG)control is a research focus in intelligent prosthetics,where its recognition algorithm relies on on extensive EMG data.However,Surface EMG signals have the characteristics of difficulties in acquisition,lack of data diversity,and instability in quality.Hence,an EMG data augmentation method based on an improved energy-based generative adversarial network(EBGAN)is proposed.This method combines convolutional neural networks with the EBGAN model to enhance the model's optimization and simulate the generation process of original data.Dynamic time warping and mean squared error(MSE)of the fast Fourier transform(FFT)amplitude are employed as metrics to evaluate the authenticity of the generated data across time and frequency domains.Support vector machines(SVMs)and other models are used to classify and validate the effectiveness of the synthesized and original data.Experimental results demonstrate that the EMG signals generated by the improved EBGAN model are highly similar to the original signals,and the synthesized data set significantly improve the classification accuracy,with an increase range of 1%to 9%.This confirms the effectiveness of the data augmentation method and provides a new approach for the intelligent analysis and application of EMG signals.
    
    
                作者
                    王寒黎
                    马铭宇
                WANG Hanli;MA Mingyu(School of Mechanical,Electrical and Vehicle Engineering,Chongqing Jiaotong University,Chongqing 400074,China)
     
    
    
                出处
                
                    《计算机测量与控制》
                        
                        
                    
                        2025年第6期161-167,共7页
                    
                
                    Computer Measurement &Control
     
            
                基金
                    重庆市教委科学技术研究项(KJZD-K201900702)。
            
    
                关键词
                    表面肌电信号
                    数据增强
                    生成对抗网络
                    分类准确率
                
                        surface EMG signals
                        data enhancement
                        generative adversarial network
                        classification accuracy
                
     
    
    
                作者简介
王寒黎(1999-),女,硕士研究生。