期刊文献+

An Improved Lightweight Pest Detection Method Based on YOLOv8

在线阅读 下载PDF
导出
摘要 This study systematically addresses the limitations of traditional pest detection methods and proposes an optimized version of the YOLOv8 object detection model.By integrating the GhostConv convolution module and the C3Ghost module,the Polarized Self-Attention(PSA)mechanism is incorporated to enhance the model’s capacity for extracting pest features.Experimental results demonstrate that the improved YOLOv8+Ghost+PSA model achieves outstanding performance in critical metrics such as precision,recall,and mean Average Precision(mAP),with a computational cost of only 5.3 GFLOPs,making it highly suitable for deployment in resource-constrained agricultural environments.
出处 《Journal of Electronic Research and Application》 2025年第3期312-317,共6页 电子研究与应用
作者简介 Author to whom correspondence should be addressed:Liling Zhang.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部