期刊文献+

人工智能在自动化数据挖掘中的算法优化研究 被引量:1

Research on Algorithm Optimization of Artificial Intelligence in Automated Data Mining
在线阅读 下载PDF
导出
摘要 随着大数据时代的到来,自动化数据挖掘在各个领域的应用日益广泛。通过对深度学习、强化学习等人工智能技术在数据挖掘中的应用进行研究,文章提出了一种基于改进型遗传算法的自适应参数优化方法。实验表明,该方法在处理高维数据时,相比传统算法可将计算时间减少35%,准确率提升18%。同时,针对噪声数据的处理能力得到显著提升,在实际业务场景中表现出较强的鲁棒性和适应性。通过对金融、医疗等领域的实际数据集进行验证,证实了该方法在自动化特征工程和模型选择方面的优越性。 With the advent of the big data era,the application of automated data mining in various fields has become increasingly widespread.The study investigates the application of artificial intelligence technologies,such as deep learning and reinforcement learning,in data mining and proposes an adaptive parameter optimization method based on an improved genetic algorithm.Experimental results demonstrate that this method reduces computation time by 35%and improves accuracy by 18%compared to traditional algorithms when processing high-dimensional data.Additionally,the method significantly enhances the ability to handle noisy data,exhibiting strong robustness and adaptability in real-world business scenarios.Validation using real-world datasets from fields such as finance and healthcare confirms the superiority of this method in automated feature engineering and model selection.
作者 窦玉姣 DOU Yujiao(Guangdong Mechanical Technician College,Guangzhou Guangdong 510450,China)
出处 《信息与电脑》 2025年第10期16-18,共3页 Information & Computer
关键词 人工智能 数据挖掘 算法优化 遗传算法 自适应参数 artificial intelligence data mining algorithm optimization genetic algorithm adaptive parameters
作者简介 窦玉姣,女,本科,讲师。研究方向:计算机科学与技术、计算机广告。
  • 相关文献

参考文献8

二级参考文献48

  • 1齐云霞.人工智能在工业自动化控制系统的应用探究[J].计算机产品与流通,2020,0(8):242-242. 被引量:7
  • 2夏艳红.人工智能在自动化控制中的应用分析[J].电子技术(上海),2021,50(10):156-157. 被引量:3
  • 3崔秀敏,王耀成.探究电力自动化控制系统中的智能技术[J].江西电力职业技术学院学报,2020(8):16-17. 被引量:4
  • 4Sarwar B,Karypis G,Konstan J,et al.Analysis of Recom- mendation Algorithms for E-commerce [ C ]. ACM Con- ference on Electronic Commerce,2000,158-167.
  • 5I Yu P S. Data Mining and Personalization Technologies[C]. The 6th International Conference on Database Systems for Advanced Applications,1999,6-13.
  • 6Hill W C, Stead L, Rosenstein M, et al. Recommending and evaluating choices in a virtual community of use [C].Proceedings of CHr95,1995,194-201.
  • 7Konstan J,Miller B,Maltz D,et al.GroupLens Applying Collaborative Filtering to Usenet News[J]. Communica- tions of ACM,Vol.40,No.3,1997,40(3 ):77-87.
  • 8Shardanand U, Maes P. Social Information Filtering: Algorithms for Automating' Word of Mouth' [ C ]. Proceedings of the Computer-Human Interaction Con-fere~e(CHI'95),1995.
  • 9Patterson D W, Neural Network Leaming: Theory and Application[M].New York:Prentice Ha11,1996.
  • 10Carpenter G A,Grossberg S.A Massively Parallel Archi- tecture for a Self -Organizing Neural Pattem Recognition Machine[ J]. Tram. IEEE on Computer Vision, Graphics and Image Processing,1987,37(1 ):54-115.

共引文献41

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部