期刊文献+

电力设备红外援例诊断方法研究及其实现

Research on power equipment case aid diagnosis system based on deep learning
在线阅读 下载PDF
导出
摘要 目的为发挥红外诊断专家的经验知识,为电气设备故障的诊断及处理提供依据和参考,方法提出一种电力设备红外图像援例诊断方法,收集并整理电气设备的典型故障案例,建立电气设备典型故障的红外案例库;通过优化网络全连接层数量,利用全局平均池化代替最大池化对VGG-16深度学习网络进行改进,减少红外图像处理时中间特征的数量,降低图像匹配的计算工作量;利用改进的VGG-16网络提取红外图像的典型特征,计算待测图像与典型案例图像特征之间的余弦距离,利用余弦距离衡量待测图像与标准图像之间的相似程度,筛选最接近的相似案例,以相似案例为依据提供故障原因分析和处理措施建议。收集7种设备43类故障的典型案例200个,开发了电力设备红外援例诊断程序。结果实验结果表明,采用改进后的深度学习网络,单张红外图像匹配平均仅需要0.255 s,比SURF方法用时缩短85.5%,比SIFT方法用时缩短91.9%,提取特征进行匹配后诊断正确率可达94.74%。结论所提方法可提高红外图像处理的效率,具有较高的诊断准确率,可为电力设备红外诊断提供一种新的方法,诊断结果可整合既有的专家经验知识为现场故障处理提供指导,具有较好的应用潜力。 Objectives In order to leverage the experience and knowledge of infrared diagnostic experts and provide a basis and reference for the diagnosis and treatment of electrical equipment faults.Methods a method for infrared image assisted diagnosis of power equipment was proposed.Typical fault cases of electrical equipment were collected and organized,and an infrared case library of typical faults of electrical equipment was established.By optimizing the number of fully connected layers in the network and using global average pooling instead of max pooling to improve the VGG-16 deep learning network,the number of intermediate features in infrared image processing was reduced,thereby reducing the computational workload of image matching.The improved VGG-16 network was used to extract typical features of infrared images,the cosine distance between the features of the test image and the typical case image was calculated,the similarity between the test image and the standard image was measured by their cosine distance,the closest similar case was selected to provide fault cause analysis and processing suggestions.200 typical cases of 43 types of faults in 7 types of equipment were collected and an infrared assisted diagnosis program for power equipment was developed.Results The experimental results showed that using the improved deep learning network,single infrared image matching only took an average of 0.255 seconds,which was 85.5%shorter than that of the SURF method and 91.9%shorter than that of the SIFT method.After extracting features for matching,the diagnostic accuracy could reach 94.74%.Conclusions The proposed method could improve the efficiency of infrared image processing with high diagnostic accuracy,providing a new method for infrared diagnosis of power equipment.The diagnostic results could integrate existing expert experience and knowledge to provide guidance for on-site fault handling,which made it have good application potential.
作者 程宏波 王林 吴浩 谢子宁 李昊岭 CHENG Hongbo;WANG Lin;WU Hao;XIE Zining;LI Haoling(School of Electrical and Automation Engineering,East China Jiaotong University,Nanchang 330013,Jiangxi,China;Sichuan Key Labo-ratory of Artificial Intelligence,Yibin 643000,Sichuan,China)
出处 《河南理工大学学报(自然科学版)》 北大核心 2025年第3期130-137,共8页 Journal of Henan Polytechnic University(Natural Science)
基金 国家自然科学基金资助项目(51967007) 江西省重点研发计划项目(20202BBEL53008) 人工智能四川省重点实验室开放课题(2022RZY01)。
关键词 深度学习 红外检测 故障案例 援例诊断 deep learning infrared detection fault case aid case diagnosis
作者简介 第一作者:程宏波(1979-),男,湖北随州人,博士,教授,博士生导师,主要从事输变电设备健康管理及电网智能控制方面的教学和研究工作。Email:hbcheng@ecjtu.edu.cn;通讯作者:王林(1998-),男,四川资阳人,硕士研究生,主要从事电力设备智能故障诊断方法研究。Email:2397824318@qq.com。
  • 相关文献

参考文献16

二级参考文献179

共引文献442

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部