期刊文献+

基于机器学习的多孔生物炭吸附CO_(2)性能预测

Prediction of CO_(2)adsorption performance in porous biochar based on machine learning
在线阅读 下载PDF
导出
摘要 CO_(2)的捕集与封存(CCS)是一种潜力巨大的减排措施。多孔生物炭含有丰富的多尺度孔隙结构,具有优异的CO_(2)吸附性能。针对传统基于试验数据建立的CO_(2)吸附预测模型存在的精度低、计算复杂等不足,采用梯度提升决策树(GBDT)、极端梯度增强算法(XGB)、轻型梯度增压机算法(LGBM)等机器学习方法对生物炭吸附CO_(2)进行模型预测,并对预测结果进行对比分析。结果表明:影响CO_(2)吸附量的前3个因素依次为生物炭的比表面积、C含量、O含量。3种算法均能有效预测生物炭对CO_(2)的吸附性能。相比之下,LGBM的预测精度最高,达到94%;GBDT在异常样本数据处理方面有显著优势;而XGB对不同测试集变化的预测结果更加稳定。在设计生物炭吸附性能时,不应盲目追求过高的表面积。建议生物炭C含量优先选择83%~88%之间,O含量优先选择15%~18%之间。 CO_(2)capture and sequestration(CCS)is an emission reduction measure with great potential.Porous biochar contains rich multi-scale pore structure,which makes it have excellent CO_(2)adsorption performance.To address the shortcomings of traditional CO_(2)adsorption prediction models built with experimental data,such as low accuracy and complicated calculation,this paper adopts machine learning methods such as gradient boosting decision tree(GBDT),extreme gradient enhancement algorithm(XGB)and light gradient booster algorithm(LGBM)to make model predictions of CO_(2)adsorption by biochar,and conducts comparative analysis of the prediction results.The results showed that the three most important factors affecting CO_(2)adsorption were the specific surface area,C content,and O content of biochar in order.All three algorithms could effectively predict the CO_(2)adsorption performance of biochar.In comparison,LGBM has the highest prediction accuracy of 94%;GBDT has a significant advantage in processing anomalous sample data;and XGB has more stable prediction results for different test set variations.When designing the adsorption performance of biochar,excessive surface area should not be blindly pursued.It is recommended that the selection of biochar C content should preferably be between 83%and 88%,and O content should preferably be between 15%and 18%.
作者 陈一飞 张晓晴 谭康豪 汪俊松 覃英宏 CHEN Yifei;ZHANG Xiaoqing;TAN Kanghao;WANG Junsong;QIN Yinghong(School of Civil Engineering and Architecture,Key Laboratory of Disaster Prevention and Engineering Safety of Guangxi,Guangxi University,Nanning 530004,P.R.China;State Key Laboratory of Subtropical Building Science,South China University of Technology,Guangzhou 510640,P.R.China)
出处 《土木与环境工程学报(中英文)》 北大核心 2025年第3期242-250,共9页 Journal of Civil and Environmental Engineering
基金 广东省省级科技计划项目国际合作专项(2021A0505030008)。
关键词 生物炭 机器学习 二氧化碳吸附 特征重要性 部分依赖图 biochar machine learning CO_(2)adsorption feature importance partial dependency map
作者简介 陈一飞(1997-),男,主要从事低碳建筑材料研究,E-mail:1993795408@qq.com;通信作者:谭康豪,男,博士,E-mail:haokangtan@163.com。
  • 相关文献

参考文献3

二级参考文献17

  • 1张军,李桂菊.二氧化碳封存技术及研究现状[J].能源与环境,2007(2):33-35. 被引量:34
  • 2钱伯章.二氧化碳减排催生新技术产业[N].中国化工报:国际化工版.2006-08-10(2).
  • 3Davison J. IEA greenhouse R&D programme [ R ]. Chehenham: IEA, 2001.
  • 4Stevens S H, Fox C E, Melzer S L, et al. Mountain CO2 deposits: analogs for geologic sequestration: proceedings of the 5th international conference on greenhouse gas reduction technologies [ C]. Collingwood: CSIRO Publishing, 2001.
  • 5JuanesR, Spiteri E J, Orr Jr F M, et al. Impact of relative permeability hysteresis on geological C02 storage [ J ]. Water Resources Research, 2006, 42(12) :12418.
  • 6Johnson J W, Nitao J J, Steefel C I, et al. Reactive transport modeling of geologic sequestration in saline aquifers : the influence of intra aquifer shales and the relative effectiveness of structural, solubility, and mineral trapping during prograde and retrograde sequestration : proceedings of the first national symposium on carbon sequestration [ C ]. Washington DC: U. S. National Energy Technology Laboratory, 2001.
  • 7Lindeberg E, Zweigel P, Bergmo P, et al. Prediction of CO2 distribution pattern improved by geology and reservoir simulation and verified by time lapse seismic: proceedings of the 5th international conference on greenhouse gas control technologies [C]. Collingwood : CSIRO, 2001.
  • 8Kiessling D, Schuett H, Schoebel B, et al. Geoelectric monitoring of geological CO2 storage at Ketzin, Germany ( CO2 SINK project) : downhole and surface-downhole measurements [ J ] . Geophysical Research Abstracts, 2009, 11:11041.
  • 9IEA. Carbon capture and storage [ EB/OL]. [ 2009 - 10 - 20 ]. http :/www. lea. org/GS/docs/ccs_gSjuly09, pdf.
  • 10Reeves S R, Scholing L. Geological sequestration of CO2 in coal seams: reservoir mechanisms, field performance and economics: proceedings of the 5th international conference on greenhouse gas control technologies [C]. Collingwood : CSIRO Publishing, 2000.

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部