期刊文献+

熔盐堆冷却剂凝固行为的实验及数值模拟研究 被引量:2

Experimental and numerical simulation study on the solidification behavior of molten salt reactor coolants
在线阅读 下载PDF
导出
摘要 熔盐堆因其优良的安全性与经济性而成为第IV代先进核反应堆系统中非常具有前景的一类堆型。然而,作为熔盐堆冷却剂的氟锂铍(FLiBe),其熔点为460℃,远高于环境温度,因此,存在冷却剂凝固而失去流动传热的风险。为此,基于能量守恒以及焓-多孔介质模型建立了带糊状区效应的一维凝固模型,通过设计的熔盐凝固实验进行模型验证,验证结果表明:总体模型误差小于±10%,满足反应堆系统安全分析要求。最后,基于系统安全分析程序ASYST-SF对FLiBe的管内填充行为进行了模拟,给出了典型工况下的流体温度、凝固层厚度以及压降的演化行为,计算结果对提升熔盐堆运行安全有着重要意义。 [Background]Molten salt reactor is a promising type of reactor in the fourth generation advanced nuclear reactor system due to its excellent safety and economy.However,as the coolant for the molten salt reactor system,lithium fluoride beryllium(FLiBe)has a melting point of 460℃,which is much higher than the ambient temperature,so there is a risk of coolant solidification in the system.[Purpose]This study aims to establish a one-dimensional solidification model with mushy zone effect based on energy conservation and enthalpy porous medium model.[Methods]Firstly,based on the energy conservation equation,a solidification layer thickness model was established and a source term model with mushy zone was established based on the enthalpy porous medium model.The velocity and temperature distribution models were obtained on the basis of the boundary layer theory.Secondly,the molten salt solidification experiment was designed to verify these models.Finally,the system safety analysis program ASYST-SF was employed to simulate the filling behavior of FLiBe coolant in the pipe.[Results]The experimental verification results show that the overall model error is less than±10%,meeting the requirements of reactor system safety analysis.The evolution behavior of fluid temperature,solidification layer thickness,and pressure drop of the pipe filling behavior under typical working conditions are observed.[Conclusions]The model and calculation results are of great significance for improving the operational safety of molten salt reactors.
作者 张伟豪 刘茂龙 曾陈 刘利民 周翀 孟履巅 顾汉洋 ZHANG Weihao;LIU Maolong;ZENG Chen;LIU Limin;ZHOU Chong;MENG Lyudian;GU Hanyang(Shanghai Jiao Tong University,Shanghai 200240,China;Fudan University,Shanghai 200433,China;Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,China;Shanghai Nuclear Equipment Test Center,Shanghai 201306,China)
出处 《核技术》 北大核心 2025年第4期121-129,共9页 Nuclear Techniques
基金 上海市自然科学基金项目(No.24ZR1405500)资助。
关键词 熔盐堆 一维凝固模型 糊状区 熔盐凝固实验 管内填充 MSR One-dimensional solidification code Mushy zone Molten salt solidification experiment Pipe filling
作者简介 第一作者:张伟豪,男,1998年出生,2020年毕业于上海大学,现为硕士研究生,研究领域为两相流动与传热;通信作者:刘茂龙,E-mail:maolongliu@fudan.edu.cn。
  • 相关文献

参考文献5

二级参考文献32

  • 1田立楠.纯气体、混合气体及液体导热系数的计算[J].氮肥设计,1996,34(4):19-22. 被引量:15
  • 2F W Dittus, L M K Boelter. Heat Transfer in Automobile Radiators of the Tubular Type [J]. Univ. Calif. Publ. Eng., 1930, 2:443 -461.
  • 3W H McAdams. Heat Transmission [M]. 3ed., New York: McGraw-Hill, 1954:219.
  • 4A P Colburn. A Method of Correlating Forced Convection Heat Transfer Data and a Comparison with Fluid Friction [J]. Trans. AIChE, 1933, 29:174-210.
  • 5E N Sieder, G E Tate. Heat Transfer and Pressure Drop of Liquids in Tubes [J]. Ind. Eng. Chem., 1936, 28(12): 1429-1435.
  • 6B S Petukhov. Heat Transfer and Friction in Turbulent Pipe Flow with Variable Physical Properties [C]//Advances in Heat Transfer. New York: Academic, 1970:504- 564.
  • 7L F Moody. Friction Factor for Pipe Flow [J]. Trans. ASME, 1944, 66:671-684.
  • 8H Hausen, Neue Gleichungen fiir Die Warmeiibertragung Bei Freier Oder Erzwungener Stromfing (New Equations for heat Transfer in Free or Forced Flow) [J]. Allg. Warmetechn, 1959(4/5): 75- 79.
  • 9V Gnielinski. New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow [J]. International Chemical Engineering, 1976, 16(2): 359 367.
  • 10Alexis B Zavoico. Solar Power Tower Design Basis Document Revision 0 [R]. Solar Thermal Technology Sandia National Laboratories, 2001.

共引文献26

同被引文献9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部