摘要
构建了连续周期函数的Simpson求积公式,并探究了其关于三角多项式的求积精度,即求积公式何时精确成立。进一步,在L_(p)范数下利用离散的Fourier算子和Vallee-Poussin算子等工具,研究了与Simpson求积公式相对应的Marcinkiewicz-Zygmund不等式。
In this paper,we establish the Simpson quadrature formula for continuous periodic functions and investigate its quadrature accuracy for trigonometric polynomials,that is,when the quadrature formula holds exactly.Further,the Marcinkiewicz-Zygmund inequalities related to the Simpson formula is investigated with respect to the L_(p)norm by utilizing tools such as the discrete Fourier operators and the Vallee-Poussin operators.
作者
王丹丹
赵易
WANG Dandan;ZHAO Yi(School of Mathematics,Hangzhou Normal University,Hangzhou 311121,China)
出处
《浙江大学学报(理学版)》
北大核心
2025年第3期377-382,共6页
Journal of Zhejiang University(Science Edition)
基金
国家自然科学基金资助项目(11601110)。
作者简介
王丹丹(1999-),ORCID:https://orcid.org/0009-0005-6846-4340,女,硕士研究生,主要从事函数逼近论研究;通信作者:赵易,ORCID:https://orcid.org/0000-0001-5241-0237,E-mail:zhaoyi@hznu.edu.cn.