期刊文献+

多边形金属板件洛伦兹力驱动冲压成形动态过程分析及成形效果优化

Dynamic Process Analysis and Optimization of Forming Effects in Lorentz Force Stamping for Polygonal Sheet Metal
在线阅读 下载PDF
导出
摘要 洛伦兹力驱动冲压成形技术是一种在传统冲压成形中引入电磁成形技术的先进制造技术,其成形速度远大于传统冲压成形,能够有效提高板件的成形极限。然而,现有针对洛伦兹力驱动冲压成形技术的研究主要对成形的可行性进行验证,成形形状多为轴对称结构,且未对成形效果进行分析,难以满足工业中差异化的需求。因此,该文提出一种多边形金属板件洛伦兹力驱动冲压成形方案,建立有限元模型对动态过程和成形效果进行了分析,并对成形效果进行了优化。结果表明:该方案成功实现了成形深度为35mm的多边形金属板件成形,最大成形速度为19.10 m/s,远大于传统冲压成形。最终板件贴模质量良好、等效应变较小、最大减薄率为20.13%。进一步针对最大减薄率进行参数优化,优化后板件最大减薄率为8.31%,相较于优化前提升了58.71%。该研究将拓展电磁成形技术的应用场景,实现差异化的零件加工成形。 Comparison with the conventional quasi-static stamping technology,the utilization of Lorentz force-driven stamping technology has the potential to significantly enhance the forming limit of sheet metal.Nevertheless,the extant research merely corroborated the viability of this approach,yet did not investigate the ultimate forming quality,which is challenging to align with the diverse requirements of the industry.Consequently,a Lorentz force stamping scheme for polygonal sheet metal is put forth in this paper.A finite element model is constructed to examine the dynamic process and forming effect,and the forming effect is optimized.Firstly,the basic model of the stamping system is established,and the most important parts of the system driver and punch are designed,and the circuit with continuous flow circuit is used to generate repulsive force to drive the forming.Secondly,because the forming process is very fast,a simulation model must le established to study the forming dynamic process and the final forming effect in detail.Finally,a fully coupled electromagnetic and mechanical field model is established to verify the feasibility of the proposed scheme.The simulation results demonstrate that the forming process of this scheme can be divided into three distinct stages:the acceleration stage,the inertia stage,and the rebound stage.The maximum forming depth achieved was 35.00 mm,with the plate exhibiting smooth sticking.The equivalent strain level was low,with a maximum thinning rate of 20.13%.The shaped plate exhibited an effective forming effect.The maximum thinning rate was optimized by manipulating the holding force,friction coefficient and discharge voltage.The maximum thinning rate was reduced to 8.31%under the optimal parameter combination.The conclusions are as follows:(1)The scheme is capable of forming polygonal sheet metal at a significantly higher speed than the traditional quasi-static forming method,while also enhancing the forming limits of sheet metal.The final forming effect is satisfactory.(2)The method exhibits characteristics of both electromagnetic forming and traditional quasi-static forming.The forming process is completed within 2.50 ms,which is a relatively short time.The forming dynamic process is divided into three stages according to the speed change of the driving device:accelerating dynamic stage,inertia stage and rebound stage.The principal forming stage is the inertial movement stage,which ensures the subsequent forming effect.(3)The friction coefficient,the blank holding force,and the discharge voltage have been selected to further optimize the maximum thinning rate.Following the optimization process,the optimal parameter combination was identified as a friction coefficient of 0.171,a blank holding force of 81.95 kN,and a discharge voltage of 11.74 kV for the drive circuit.At this juncture,the maximum thinning rate of the plate is 8.31%,which represents a 58.71%increase over the preceding baseline.
作者 熊奇 陈开创 马朝杰 王毅哲 阎诺 Xiong Qi;Chen Kaichuang;Ma Chaojie;Wang Yizhe;Yan Nuo(College of Electrical Engineering&New Energy,China Three Gorges University,Yichang,443002,China;Wuhan National High Magnetic Field Center,Huazhong University of Science and Technology,Wuhan,430074,China;Hubei Provincial Engineering Research Center of Intelligent Energy Technology,China Three Gorges University,Yichang,443002,China)
出处 《电工技术学报》 北大核心 2025年第7期2007-2019,共13页 Transactions of China Electrotechnical Society
基金 武汉强磁场学科交叉基金资助项目(WHMF202121)。
关键词 电磁成形 洛伦兹力 板件 成形效果 减薄率 Electromagnetic forming Lorentz force sheet metals forming effect reduction rate
作者简介 熊奇,男,1990年生,博士,副教授,博士生导师,研究方向为电磁成形、多场耦合分析及储能技术。E-mail:pandaqi0218@gmail.com;通信作者:阎诺,男,1997年生,硕士研究生,研究方向为电磁成形、电磁场分析及应用。E-mail:mamba1021@126.com。
  • 相关文献

参考文献13

二级参考文献116

共引文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部