摘要
该文基于疫苗接种年龄、潜伏期年龄以及时滞效应对疾病传播的潜在影响,构建了一类兼具时滞特性与类年龄结构的媒介传染病模型.首先,推导了基本再生数R_(0)的精确表达式,并借助它对各类平衡态的存在性进行了系统刻画.进一步,构造合适的Lyapunov函数分析无病平衡态的稳定性,当R_(0)<1时无病平衡态是全局渐近稳定的;当R_(0)>1时,地方病平衡态是存在的并且疾病将持续存在.最后,通过数值模拟对主要的理论成果进行了解释.
Based on the potential influence of vaccination age and latency age as well as the effect of time delay on the transmission of the disease,a kind of age-structured vector-borne infectious disease model with time delay is constructed in this paper.Firstly,the exact expression of the basic reproduction number R_(0) is drived,and the existence of various steady states is systematically characterised with it.Further,a suitable Lyapunov function is constructed to analyze the stability of disease-free steady state.The disease-free steady state is globally asymptotically stable when R_(0)<1,while the endemic steady state exists and the disease is consistently persistent when R_(0)>1.Finally,numerical simulations are used to explain the main theoretical results.
作者
刘慧慧
王雅萍
聂麟飞
LIU Huihui;WANG Yaping;NIE Linfei(College of Mathematics and System Science,Xinjiang University,Urumqi 830017,China)
出处
《华中师范大学学报(自然科学版)》
北大核心
2025年第2期169-178,共10页
Journal of Central China Normal University:Natural Sciences
基金
国家自然科学基金项目(12361103)
新疆维吾尔自治区自然科学基金项目(2022TSYCCX0015,2021D01E12).
关键词
疫苗接种年龄
潜伏年龄
基本再生数
稳定性
一致持续性
vaccination age
latent age
the basic reproduction number
stability
uniform persistence
作者简介
通信联系人:聂麟飞.E-mail:lfnie@163.com.