摘要
本文研究三维空间中水平方向无限的条形区域下,Navier-Stokes-Darcy模型强解的局部适定性.主要基于方程的结构和一些插值不等式建立方程组的先验估计,进而利用标准的迭代方法证明解的局部适定性.其中,Dirichlet-Neumann算子的性质在证明中起着关键作用.
In this paper,we focus on the local well-posedness of strong solutions of Navier-Stokes-Darcy System in 3D horizontally infinite strip domain.A priori estimation of the solution is established based on the structure of the equations and some interpolation inequalities,then the local well-posedness of the solution is proved by standard iterative methods.It is worth noting that the properties of the Dirichlet-Neumann operator play an important role in the proof.
作者
高宁宁
徐夫义
GAO Ningning;XU Fuyi(School of Mathematics,Northwest University,Xi'an 710127,China;School of Mathematics and Statistics,Shandong University of Technology,Zi'bo 255049,China)
出处
《纯粹数学与应用数学》
2025年第1期58-70,共13页
Pure and Applied Mathematics
基金
国家自然科学基金项目(11771043).
作者简介
高宁宁(1996-),博士生,研究方向:偏微分方程;通讯作者:徐夫义(1980-),博士,教授,研究方向:偏微分方程.