期刊文献+

基于强化学习的导弹突防决策建模研究

Reinforcement Learning Modeling of Missile Penetration Decision Based on Combat Simulation
在线阅读 下载PDF
导出
摘要 突防能力是导弹等装备的关键评价指标,针对传统基于知识工程的突防决策方法难以自适应演进的不足,提出了基于作战仿真和深度强化学习结合的智能突防决策建模方法。搭建了基于WESS的导弹智能决策训练环境;以导弹机动突防决策建模为例进行了应用研究,建立了机动突防决策网络模型;基于离散SAC算法进行了决策模型的强化学习训练,并开展智能化测试对比。初步试验结果表明:基于机器学习的智能决策模型具有更好的突防效果。 Penetration capability is a primary measure of missile systems.In response to the shortcomings of traditional knowledge-based decision-making methods that are difficult to adaptively evolve,an intelligent penetration decision-making based on combat simulation and DRL is proposed.A missile intelligent decision-making training environment is constructed based on the WESS system.Taking missile maneuver penetration decision-making as an example,a maneuver penetration decisionmaking network model is designed and trained based on the SAC-discrete algorithm and the test of intelligence is conducted.Experimental results show that the intelligent decision model derived from machine learning has a better combat outcome than traditional methods.
作者 张斌 雷永林 李群 高远 陈永 朱佳俊 鲍琛龙 Zhang Bin;Lei Yonglin;Li Qun;Gao Yuan;Chen Yong;Zhu Jiajun;Bao Chenlong(College of College of Computer Science and Technology,National University of Defense Technology,Changsha 410073,China;College of Systems Engineering,National University of Defense Technology,Changsha 410073,China)
出处 《系统仿真学报》 北大核心 2025年第3期763-774,共12页 Journal of System Simulation
关键词 导弹突防 智能决策 深度强化学习 作战仿真 WESS仿真系统 missile penetration intelligent decision-making DRL combat simulation WESS simulation system
作者简介 第一作者:张斌(1976-),男,研究员,博士,研究方向为装备知识工程;通信作者:雷永林(1978-),男,教授,博导,博士,研究方向为作战效能仿真。
  • 相关文献

参考文献5

二级参考文献36

共引文献640

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部