期刊文献+

分枝杆菌经宿主GPR84促进感染诱导的脂滴生成并加速传染进程

Host GPR84 promotes the formation of mycobacterial infection-induced lipid droplet and accelerates infection
原文传递
导出
摘要 为探讨G蛋白偶联受体84(G-protein-coupled receptor 84,GPR84)基因在分枝杆菌感染中的作用,研究首先构建GPR84基因突变型斑马鱼,观察海分枝杆菌(Mycobacterium marinum)感染后斑马鱼体内细菌的增殖情况及宿主生存期表型,机制上首先采用中性红染色及苏丹黑染色分别排除了GPR84对巨噬细胞和中性粒细胞发育的影响,并通过斑马鱼切尾实验评估GPR84缺失对中性粒细胞募集的影响。进一步通过油红O染色评估了染菌斑马鱼体内脂滴生成情况,并通过qRT-PCR检测感染后斑马鱼脂质代谢相关基因及炎性因子基因的转录水平。以上实验结果显示,斑马鱼瞬时敲除GPR84后能抑制体内分枝杆菌的增殖,延长宿主生存期,但GPR84缺失不影响巨噬细胞和中性粒细胞的发育,且不影响中性粒细胞的募集;GPR84突变型斑马鱼在分枝杆菌感染后脂滴生成减少,并且伴随着胆固醇的外排泵ATP结合盒转运蛋白G1(ATP-binding cassette transporter G1,ABCG1)基因表达下调,而炎性因子的mRNA表达上调。该研究提示分枝杆菌可能通过宿主GPR84诱导脂滴生成以抑制分枝杆菌感染过程中宿主炎性因子的表达,最终促进细菌传染进程。 To investigate the role of host G-protein-coupled receptor 84(GPR84)upon mycobacterial infection,GPR84 mutant zebrafish model was established to assess the effect of GPR84 on Mycobacterium marinum(M.m.)proliferation and host survival.Mechanistically,the effect of GPR84 on macrophage and neutrophil development was first excluded by neutral red staining and Sudan black staining,respectively.The effect of GPR84 deficiency on neutrophil recruitment was evaluated by zebrafish tail amputation assay.Moreover,the formation of lipid droplets in infected zebrafish was detected by oil red O staining,and the transcription levels of genes related to lipid metabolism and inflammatory factors in infected models were detected by qRT-PCR.The results of the above experiments showed that transient knockout of GPR84 in zebrafish inhibited the proliferation of M.m.in vivo and prolonged host survival,whereas GPR84 deficiency did not affect the development of macrophages and neutrophils,or the recruitment of neutrophils.Further studies revealed that GPR84 mutant zebrafish presented reduced lipid droplets formation after mycobacterial infection and was accompanied by down-regulation of cholesterol efflux pump gene ATP-binding cassette transporter G1(ABCG1),meanwhile inflammatory factors expression was up-regulated.This study suggests that mycobacterial infection may induce lipid droplets formation through host GPR84 to suppress inflammatory factors expression and ultimately facilitates the process of bacterial infection.
作者 周静 热孜亚·吾买尔 陈紫涵 刘建新 王德成 晏博 ZHOU Jing;Reziya·Wumaier;CHEN Zi-han;LIU Jian-xin;WANG De-cheng;YAN Bo(Hubei Provincial Key Laboratory of Tumor Microenvironment and Immunotherapy,College of Basic Medical Sciences,China Three Gorges University,Yichang 443002,China;Institute of Infection and Inflammation,College of Basic Medical Sciences,China Three Gorges University,Yichang 443002,China;Tuberculosis Research Center,Shanghai Clinical Center for Public Health,Fudan University,Shanghai 201508,China;Key Laboratory of Medical Molecular Virology of Ministry of Education/Ministry of Health,School of Basic Medical Sciences,Fudan University,Shanghai 200032,China;Key Laboratory of Life Sciences,Xizang Minzu University,Xianyang 712082,China)
出处 《现代免疫学》 2025年第1期7-13,共7页 Current Immunology
基金 上海市“科技创新行动计划”医学创新研究领域项目(22Y11920500)。
关键词 分枝杆菌 G蛋白偶联受体84 脂滴 斑马鱼 mycobacterium G-protein-coupled receptor 84 lipid droplet zebrafish
作者简介 共同第一作者:周静(1998-),女,硕士生,主要从事结核中感染免疫相关研究;共同第一作者:热孜亚·吾买尔(1990-),女,博士生,主要从事结核中感染免疫相关研究;共同通信作者:王德成,E-mail:dcwang99@163.com;共同通信作者:晏博,E-mail:bo.yan@shphc.org.cn。
  • 相关文献

参考文献1

二级参考文献23

  • 1Joung JK, Sander JD. TALENs: a widely applicable technol-ogy for targeted genome editing. Nat Rev Mol Cell Biol 2012;14:49-55.
  • 2Moehle EA, Rock JM, Lee YL, et al. Targeted gene addi-tion into a specified location in the human genome using de-signed zinc fingernucleases. Proc Natl Acad Sci USA 2007;104:3055-3060.
  • 3Umov FD, Miller JC,Lee YL, et al Highly efficient endoge-nous human gene correction using designed zinc-finger nucle-ases. Nature 2005;435:646-651.
  • 4Hockemeyer D, Wang H,Kiani S, et al Genetic engineering ofhuman pluripotent cells using TALE nucleases. Nat Biotechnol2011;29:731-734.
  • 5Miller JC, Tan S, Qiao G, et al A TALE nuclease architecturefor efficient genome editing. Nat Biotechnol 2011; 29:143-148.
  • 6Chen F, Pruett-Miller SM, Huang Y,et al. High-frequency ge-nome editing using ssDNA oligonucleotides with zinc-fingernucleases. Nat Methods 2011; 8:753-755.
  • 7Bedell VM, Wang Y,Campbell JM, et al. In vivo genomeediting using a high-efficiency TALEN system. Nature 2012;491:114-118.
  • 8Makarova KS,Haft DH,Barrangou R, et al Evolution andclassification of the CRISPR-Cas systems. Nat Rev Microbiol2011;9:467-477.
  • 9Haurwitz RE, Jinek M,Wiedenheft B,Zhou K,Doudna JA.Sequence- and structure-specific RNA processing by a CRIS-PR endonuclease. Science 2010; 329:1355-1358.
  • 10Deltcheva E,Chylinski K,Sharma CM, et al. CRISPR RNAmaturation by trans-encoded small RNA and host factor RNaseIII. Nature 2011; 471:602-607.

共引文献163

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部