期刊文献+

基于强化学习的多能源动态滑翔航迹优化方法

Multi energy dynamic soaring trajectory optimization method based on reinforcement learning
在线阅读 下载PDF
导出
摘要 针对无人机动态滑翔问题,提出了一种基于深度强化学习的航迹优化方法。该方法综合利用梯度风能和太阳能,引入了障碍物约束以模拟复杂障碍环境。使用神经网络近似逼近高斯伪谱方法求解航迹的策略,在训练得到的策略基础上利用双延迟深度确定性策略梯度算法进行策略改进,在大幅度提升推理实时性的同时解决了传统最优控制算法在动态滑翔领域难以应对变化风场的问题。实验针对动态滑翔2种经典模式进行仿真验证,之后在考虑多种能量源的情况下进行蒙特卡洛仿真。结果表明,基于深度强化学习的动态滑翔航迹优化方法在单个滑翔周期内获能与最优结果相近,而实时推理决策时间减少了91%。在变化风场环境下,文中方法相较于传统方法具有更强的适应性。 In addressing the issue of dynamic soaring in unmanned aerial vehicles,a trajectory optimization approach based on deep reinforcement learning is proposed.This method synergistically utilizes gradient wind energy and solar energy and incorporates obstacle constraints to simulate complex barrier environments.It employs neural networks to approximate the Gaussian pseudospectral method for solving trajectory policies.On the foundation of the trained policies,the method utilizes the twin delayed deep deterministic policy gradient algorithm for policy enhancement.This significantly boosts the real-time inference capabilities while addressing the challenges traditional optimal control algorithms face in dynamic soaring due to varying wind fields.The experiments initially validate the approach through simulation of two classic modes of dynamic soaring,followed by Monte Carlo simulations considering multiple energy sources.The results indicate that the dynamic soaring trajectory optimization method based on deep reinforcement learning achieves energy acquisition comparable to optimal outcomes within a single soaring cycle,with a 91%reduction in real-time inference decision time.Moreover,in changing wind field environments,this method demonstrates superior adaptability compared to traditional approaches.
作者 张云飞 王宏伦 张梦华 巩轶男 ZHANG Yunfei;WANG Honglun;ZHANG Menghua;GONG Yinan(School of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,China;The Science and Technology on Aircraft Control Laboratory,Beihang University,Beijing 100191,China;Hiwing Aviation General Equipment Co.,Ltd.,Beijing 100074,China)
出处 《西北工业大学学报》 北大核心 2025年第1期128-139,共12页 Journal of Northwestern Polytechnical University
关键词 动态滑翔 强化学习 高斯伪谱 航迹优化 dynamic soaring reinforcement learning Gaussian pseudospectral method trajectory optimization
作者简介 张云飞(1999-),硕士研究生;通信作者:王宏伦(1970-),教授,e-mail:wang-hl-12@126.com。
  • 相关文献

参考文献4

二级参考文献22

  • 1钱翼稷.空气动力学[M].北京:北京航空航天大学出版社,2008.
  • 2Noll T E, Brown J M, Perez-Davis M E, et al. Investiga- tion of the Helios prototype aircraft mishap, Volume I Mishap Report[R]. Washington, D. C. : NASA Langley Research Center, 2004.
  • 3Hannes R. Fly around the world with a solar powered air- plane, AIAA-2008-8954[R]. Reston: AIAA, 2008.
  • 4Hall D W, Fortenbach C D, Dimiceli E V, et al. A pre- liminary study of solar powered aircraft and associated power trains, NASA CR-3699[R]. Washington, D. C. : NASA, 1983.
  • 5Hall D W, Hall S A. Structural sizing of a solar powered aircraft, NASA CR-172313[R]. Washington, D. C.: NASA, 1984.
  • 6Klesh A T, Kabamba P T. Energy-optimal path planning for solar-powered aircraft in level flight, AIAA-2007-6655 [R]. Reston: AIAA, 2007.
  • 7Spangelo S C, Gilberty E G, Kleshz A T, et al. Periodic energy-optimal path planning for solar-powered aircraft,AIAA-2009 6016[R]. Reston: AIAA, 2009.
  • 8Brandt S A, Gilliamt F T. Design analysis methodology for solar-powered aircraft :J:. Journal of Aircraft, 1995, 32(4): 703- 709.
  • 9Sachsl G, Lenz J, Holz:pfel F. Unlimited endurance per- formance of solar uavs with minimal or zero electric energy storage, AIAA-2009-6013[R]. Reston: AIAA, 2009.
  • 10Sinsay J D, Tracey B, Alonso J J, et al. Air vehicle de sign and technology considerations for an electric vtol met- ro-regional public transportation, AIAA-2012-5404 [R].Reston: AIAA, 2012.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部