摘要
【目标】深入研究车-路-连续梁桥耦合系统动力响应。【方法】基于达朗贝尔原理推导车-路-连续梁桥耦合系统解析模型;分别采用梁单元和实体单元建立某4跨预应力混凝土连续梁桥有限元模型;采用弹簧单元、质量单元和刚性梁单元建立四自由度二维车辆模型和十一自由度三维整车模型,得到3个车-路-连续梁桥耦合系统有限元模型。【结论】车-路-连续梁桥耦合系统的动力响应随车桥质量比的增大呈非线性加速增大趋势,车桥质量比对车辆动力响应的影响比对桥梁动力响应的影响更大;连续梁桥各跨跨中截面竖向位移的动力放大系数不同,2个中跨的动力放大系数均大于2个边跨的动力放大系数,路面不平顺等级越差,这个差别越小;路面整体或局部不平顺等级增大时,车辆和桥梁的动力响应均会增大,与路面平顺时的动力放大系数相比,相对差值均大于5%,桥梁边跨的动力放大系数相对差值最大,达61.13%;加权振级随路面不平顺等级增大而增大,与A级路面相比,当整体和局部路面均为C级路面时,车辆加权振级相对差值接近,分别为17.50%和14.57%;从车辆驶入局部劣化路段开始,直到车辆下桥,系统的动力响应均比无局部劣化时的动力响应大。
[Objective]For a comprehensive study on the dynamic response of vehicle-pavement-continuous beam bridge coupling system.[Method]The analytic model of vehicle-pavement-continuous beam bridge coupling system was derived based on Darren Bell principle. The finite element model of a 4-span prestressedconcrete continuous beam bridge was established by using the beam elements and solid elements respectively.The 4-degree-freedom 2D vehicle model and 11-degree-freedom 3D vehicle model were established by usingthe spring elements, mass elements, and rigid beam elements. Then 3 finite element models of vehiclepavement-continuous beam bridge coupling systems were established. [ Conclusion] The dynamic responseof vehicle-pavement-continuous beam bridge coupling system increases nonlinearly with the increase ofvehicle-bridge mass ratio. The influence of vehicle-bridge mass ratio on vehicle dynamic response is greaterthan that on the bridge dynamic response. The vertical displacement dynamic amplification coefficients ofvarious mid-span sections of continuous beam bridge are different. The dynamic amplification coefficients ofboth mid-span are greater than those of both side- span. The worse the road surface roughness, the smallerthe difference. When the overall or local road surface roughness increases, the dynamic response of vehicleand bridge will also increase. When the road surface is smooth, compared with the dynamic amplificationcoefficient, the relative difference is over 5%. The dynamic amplification coefficient of bridge side-span hasthe largest relative difference, reaching 61. 13%. The weighted vibration level increases with the increase ofroad surface roughness. Compared with road surface Class A, when both the overall and local road surfacesare Class C, the relative difference of weighted vibration level are close, which are 17. 50% and 14. 57%respectively. From the moment the vehicle enters road section with local deterioration until the vehicle leavesthe bridge, the system dynamic responses are greater than those without local degradation.
作者
李梦
任剑莹
孙志棋
张志强
LI Meng;REN Jianying;SUN Zhiqi;ZHANG Zhiqiang(Department of Engineering Mechanics,Shijiazhuang Tiedao University,Shijiazhuang,Hebei 050043,China;State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,Shijiazhuang Tiedao University,Shijiazhuang,Hebei 050043,China;Zhongji Shimate Technology Hebei Co.,Ltd.,Shijiazhuang,Hebei 050035,China;School of Transportation Engineering,Shijiazhuang Institute of Technology,Shijiazhuang,Hebei 050228,China)
出处
《公路交通科技》
北大核心
2025年第2期161-178,共18页
Journal of Highway and Transportation Research and Development
基金
国家自然科学基金项目(12372018)
河北省自然科学基金项目(A2022210007)
河北省高等学校科学技术研究项目(ZD2022019)。
关键词
桥梁工程
车-路-连续梁桥耦合系统
解析模型
有限元模型
路面不平度
动力响应
bridge engineering
vehicle-pavement-continuous beam bridge coupling system
analytic model
finite element model
road surface roughness
dynamic response
作者简介
李梦(1999-),女,河北唐山人,硕士,研究方向为车-桥耦合振动。(957235809@qq.com);通讯作者:任剑莹(1977-),女,河北平山人,博士,教授,研究方向为车-桥耦合振动、损伤识别。(renjianying@stdu.edu.cn)。