期刊文献+

基于熵权-TOPSIS法的风光柴储互补发电系统容量优化配置

Capacity Optimization of Wind-Solar-Diesel-Storage Complementary Power Generation System Based on Entropy Weight-TOPSIS Method
在线阅读 下载PDF
导出
摘要 以某地区风光柴储互补发电系统为研究对象,将系统总成本和负荷缺电率作为优化目标,建立容量优化配置模型。采用多目标灰狼算法(MOGWO)对模型进行优化,将优化结果与多目标粒子群算法(MOPSO)的优化结果进行对比。同时,采用熵权-优劣解距离(TOPSIS)多目标决策法对优化解集进行筛选,降低了主观因素对权重系数的影响,增强了最优方案的合理性。结果表明:与MOPSO相比,MOGWO优化精度更高;在算例分析中,系统最优配置方案为风力发电机37台,光伏电池836块,柴油发电机5台,蓄电池531块,系统总成本116.904万元。 A capacity optimization configuration model was established for a wind-solar-diesel-storage complementary power generation system in a certain region,with the total system cost and load power deficit rate being the optimization objectives.The model was optimized using the multi-objective grey wolf optimizer(MOGWO),and the optimization results were compared with that of the multi-objective particle swarm optimizer(MOPSO).Additionally,the entropy weight-TOPSIS multi-objective decision-making method was employed to screen the optimized solution set,which was aimed at reducing the impact of subjective factors on the weight coefficients and enhancing the rationality of the optimal solution.Results show that the optimization accuracy of MOGWO surpasses that of MOPSO.In the example analysis,the optimal system configuration is 37 wind turbines,836 solar panels,5 diesel generators,and 531 batteries,with a total system cost of 1.16904 million yuan.
作者 高建强 张浩 危日光 GAO Jianqiang;ZHANG Hao;WEI Riguang(School of Energy,Power and Mechanical Engineering,North China Electric Power University,Baoding 071003,Hebei Province,China)
出处 《动力工程学报》 北大核心 2025年第2期300-306,共7页 Journal of Chinese Society of Power Engineering
关键词 风光柴储互补发电系统 容量配置 熵权-TOPSIS法 多目标灰狼算法 wind-solar-diesel-storage complementary power generation system capacity configuration entropy weight-TOPSIS method multi-objective grey wolf optimizer
作者简介 高建强(1966-),男,河北定州人,教授,博士,研究方向为系统建模与仿真;通信作者:张浩,男,硕士研究生,E-mail:15264399743@163.com。
  • 相关文献

参考文献16

二级参考文献204

  • 1李琼慧,叶小宁,胡静,黄碧斌,王彩霞.分布式能源规模化发展前景及关键问题[J].分布式能源,2020,5(2):1-7. 被引量:23
  • 2刘殿海,杨勇平,杨昆,徐二树,杨志平.分布式发电优化配置研究[J].工程热物理学报,2006,27(z1):9-12. 被引量:5
  • 3钱一晨,金晶.可再生能源混合系统电源优化配置综述[J].太阳能学报,2012,33(S1):98-102. 被引量:7
  • 4王芳,邱玉辉.一种引入轮盘赌选择算子的混合粒子群算法[J].西南师范大学学报(自然科学版),2006,31(3):93-96. 被引量:15
  • 5国家电网公司.Q/GDW392--2009风电场接入电网技术规定[S].北京:中国电力出版社,2010.
  • 6Woyte A, Van V, Belmans R, et al. Voltage fluctuations on distribution level introduced by photovoltaic systems[J]. IEEE Trans. on Energy Conversion, 2006, 21(1): 202-209.
  • 7Giraud F. Analysis of a utility-interactive wind- photovoltaic hybrid system with battery storage using neural network[D]. Lowell: University of Massachusetts, 1999.
  • 8Kellogg W. Generation unit sizing and cost analysis.for stand-alone wind, photovoltaic, and hybrid wind/PV systems[J]. IEEE Trans. on Energy Conversion, 1998, 13(1): 70-75.
  • 9Borowy B S, Salameh Z M. Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system[J]. IEEE Trans. on Energy Conversion, 1996, 11(2): 367-375.
  • 10Shrestha G B, Goel L. A study on optimal sizing of stand-alone photovoltaic stations[J]. IEEE Trans. on Energy Conversion, 1998, 13(4): 373-378.

共引文献566

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部