期刊文献+

基于伽玛能谱数据土壤肥力因子空间分布预测初探

Prediction of Soil Fertility Factor Spatial Distribution Using Gamma-ray Spectrum Data
原文传递
导出
摘要 【目的】为了探索伽玛能谱数据实现土壤表层(0~30 cm)肥力空间分布预测。【方法】使用偏最小二乘回归(PLSR)、支持向量机(SVM)和反向传播神经网络(BPNN)分别建立土壤伽玛能谱肥力因子模型。【结果】BPNN模型土壤肥力因子预测精度整体要优于PLSR模型和SVM模型;土壤全氮、pH、黏粒和砂粒含量BP神经网络模型预测精度较高,决定系数R^(2)分别为0.564、0.556、0.612和0.626,全钾和全磷含量预测精度较低;研究区土壤全氮、pH、黏粒和砂粒预测空间分布与样本点实际空间分布相比,数值统计特征和趋势均基本一致。【结论】研究区伽玛能谱数据预测土壤全氮、pH、黏粒和砂粒含量空间分布具有一定的可行性,全磷、全钾和粉粒含量无法实现有效预测。 [Objective]The aim was to explore the gamma spectrum data to predict the spatial distribution of fertility in the soil surface layer(0~30 cm).[Method]The soil fertility factor models were established by using partial least squares regression(PLSR),support vector machine(SVM)and BP neural network(BPNN).[Result]The soil fertility factors prediction accuracy of BP neural network model was better than partial least squares regression and support vector machine.The prediction accuracy of BP neural network model for total nitrogen content,pH,clay content and sand content were higher,R^(2) values were 0.564,0.556,0.612 and 0.626,respectively.However,the prediction accuracies for total potassium and total phosphorus contents did not meet expectations.Compared with the actual distribution results of sample points,the prediction results of BP neural network of soil total nitrogen content,pH,clay content and sand content in the study area were basically consistent in numerical statistical characteristics and trends.[Conclusion]It was feasible to predict the spatial distribution of soil total nitrogen content,pH,clay content,and sand content using gamma spectroscopy data in the research area,but total phosphorus,total potassium and silt content could not be predicted.
作者 陈浩峰 方彦奇 彭江英 杨奎 陈伟 梁森 赵国凤 CHEN Hao-feng;FANG Yan-qi;PENG Jiang-ying;YANG Kui;CHEN Wei;LIANG Sen;ZHAO Guo-feng(Geological Exploration Technology Institute of Jiangsu Province,Nanjing 210049,China;Jiangsu Province Engineering Research Center of Airborne Detecting and Intelligent Perceptive Technology,Nanjing 210049,China)
出处 《土壤通报》 CSCD 北大核心 2024年第6期1534-1542,共9页 Chinese Journal of Soil Science
基金 江苏省地质勘查基金(苏财资环[2019]14号和[2022]27号) 江苏省地矿局科研项目(2021KY14,202004196K1K)资助。
关键词 地面伽玛能谱 神经网络 土壤肥力因子 空间分布预测 Gamma-ray spectrum Neural network Soil fertility factors Spatial distribution prediction
作者简介 陈浩峰(1990-),男,浙江兰溪人,硕士,物化遥工程师。研究方向:地球物理勘查。E-mail:1015006397@qq.com;通讯作者:方彦奇,E-mail:478178005@qq.com。
  • 相关文献

参考文献7

二级参考文献105

  • 1田安红,付承彪,熊黑钢,赵俊三.BPNN对不同人为活动区域的盐渍土Na^+高光谱估测[J].水土保持研究,2020,27(2):364-369. 被引量:6
  • 2安凯春,石俊玲.渭北旱塬区农业可持续发展的途径[J].现代种业,2005(6):12-13. 被引量:8
  • 3徐永明,蔺启忠,王璐,黄秀华.基于高分辨率反射光谱的土壤营养元素估算模型[J].土壤学报,2006,43(5):709-716. 被引量:47
  • 4李伟,张书慧,张倩,董朝闻,张守勤.近红外光谱法快速测定土壤碱解氮、速效磷和速效钾含量[J].农业工程学报,2007,23(1):55-59. 被引量:66
  • 5邬建国.景观生态学--格局、过程、尺度与等级[M].北京:高等教育出版社,2002..
  • 6Whelan BM, A B McBratney, R A Viscarra Rossel.Spatial prediction for precision farming [A]. Madison,WI. Precision Agriculture [C]. ASA - CSSA-SSSA,1996:331-342.
  • 7Kravchenko A N, Bullock D G. Comparison of interpolation methods for mapping soil P and Kcontents[A]. St.Paul, MN, The 4th Inter. Conf. on Prec. Agric [C].1998,19.
  • 8Gotway C A, Ferguson R B, Hergert G W. The effects of mapping scale on variable rate fertilizer recommendations for corn[A]. Madison, WI. Proc. 3rd Inter. Conf. On Site-Specific Management for Agricultural Systems [C].Am Soc Agron, 1996:321-330.
  • 9Fraisse C W, Sudduth K A, Kitchen N R. Use of unsupervised clustering algorithms for delineating within-field management zones[A]. ASAE Canada, 1999:18-21.
  • 10Kitchen N R, Sudduth K A, Drummond S T. An evaluation of methods for determining site-specific management zones [A]. St. Louis, Proceedings of the North Central Extension-Industry Soil Fertility Conference, Potash and Phosphate Institute, Missouri, 1998:133- 139.

共引文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部