期刊文献+

石墨烯和硅丙乳液复合材料的制备及性能 被引量:10

Preparation and Properties of Graphene and Silicone-Acrylic Emulsion Composites
在线阅读 下载PDF
导出
摘要 采用化学氧化还原法和超声分散制备出石墨烯(GN),采用X射线衍射仪、红外光谱和原子力显微镜对所得石墨烯进行了分析和表征。结果表明,氧化石墨烯被较好地还原为石墨烯并且成功分散为纳米级厚度;采用溶液超声共混法制备石墨烯/硅丙乳液复合材料。对复合材料成膜进行扫描电镜表征、热重分析、导电渗流测试、力学性能以及耐水、耐腐蚀性测试,发现复合材料具有较低的渗滤阈值(质量分数0.5%),石墨烯用量大于0.9%时,体积电阻率基本稳定在103Ω·cm以下,导电性有了明显提高;石墨烯的用量为0.7%时,与硅丙乳液相比,复合材料拉伸强度提高了15.5%,断裂伸长率下降了3.6%,耐水性提高了14%,失重5%时的热分解温度提高了43℃,耐腐蚀性能也得到了极大提高。 Graphene( GN) and silicone-acrylate emulsion composites were prepared by joining graphene solution which was obtained by chemical reduction-oxidation and ultrasonic dispersion into acrylic emulsion. The graphene was characterized by XRD,AFM and IR and the composite films were characterized by SEM,TG,electrical conductivity,anti-corrosion performance test,mechanics performance and water resistance test. The results show that the graphene obtained from graphene oxide by reduction reaction is better and was successfully dispersed with nanoscale thickness. The composites exhibit excellent electrical properties with a percolation threshold as low as 0. 5% and a stable volume resistance below 103Ω·cm when the graphene content is more than 0. 9%. In addition,when the additive amount of GN reached 0. 7%,compared with silicone acrylate emulsion,the tensile strength of the composite materials increases by15. 5%,the elongation at break decreases by 3. 6% and the decomposition temperature increases nearly 43 ℃,the performance of resistance to water increases by 14% and corrosion resistance is greatly improved.
出处 《高分子材料科学与工程》 EI CAS CSCD 北大核心 2014年第8期144-149,共6页 Polymer Materials Science & Engineering
基金 国家自然科学基金资助项目(21276152)
关键词 石墨烯 硅丙乳液 热分解温度 力学性能 耐水性 导电性 graphene silicone acrylate emulsion decomposition temperature mechanics performance water resistance electrical conductivity
  • 相关文献

参考文献3

二级参考文献16

  • 1GEIM A K,NOVOSELOV K S.The rise of graphene[J].Nature Materials,2007,6:183-191.
  • 2NOVOSELOV K S,GEIM A K,MOROZOV S V.Electric field effect in atomically thin carbon films[J].Science,2004,306:666-669.
  • 3NOVOSELOV K S,JIANG D,SCHEDIN F.Two-dimensional atomic crystals[J].Proceedings of National Academy of Sciences of the United States of America,2005,102:10451-10453.
  • 4MEYER J C,GEIM A K,KATSNELSON M I.The structure of suspended graphene sheets[J].Nature,2007,446:60-63.
  • 5ZHANG Y,TAN Y W,KIM P.Experimental observation of quantum hall effect and Berrys phase in graphene[J].Nature,2005,438:201-204.
  • 6CHAE H K,SIBERIO PEREZ D Y,KIM J.A route to high surface area,porosity and inclusion of larges molecules in crystals[J].Nature,2004,427:523-527.
  • 7GEIM A K.Graphene:status and prospects[J].Science,2009,324:1530-1534.
  • 8BRUMFIEL G.Graphene gets ready for the big time[J].Nature,2009,458:390-391.
  • 9STANKOVICH S,DIKIN D A,DOMMETT G H B.Graphene-based composite materials[J].Nature,2006,442:282-286.
  • 10中国复合材料学会.复合材料探索与求实[M].北京:中国农业科学技术出版社,2006.

共引文献34

同被引文献121

引证文献10

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部