摘要
光电催化分解水技术可将太阳能直接转化为清洁、可储存的氢能源,然而目前光阳极普遍存在析氧动力学缓慢、光生载流子复合快等问题导致太阳能分解水转换效率较低.我们在Fe_(2)O_(3)纳米棒光阳极表面修饰N掺杂FeNi催化剂(Fe_(2)O_(3)-FNNO),在1.23 V时光电流密度达到2.5 mA·cm^(-2)(AM 1.5G,100 mW·cm^(-2)),相比未修饰Fe_(2)O_(3)光阳极性能提升2.5倍(1.0 mA·cm^(-2)).进一步研究表明,FeNi催化剂与Fe_(2)O_(3)之间的N-O界面键合能够有效促进光生电子-空穴高效分离与转移,光生空穴快速转移至FeNi催化剂表面活性位,从而大幅度提高析氧催化活性与稳定性.该研究工作为构筑高效稳定的Fe_(2)O_(3)光阳极提供了新的研究思路.
Photoelectrochemical(PEC)catalysis has been perceived as a promising approach in the water splitting,utilizing the drive of sunlight to yield evironmentally and storable hydrogen energy.However,the photoanodes were restricted in sluggish water oxidation kinetics and high charge recombination,resulting in low energy conversion.Herein,we demonstrated the N-doped FeNi cocatalysts over the surface of pristine Fe_(2)O_(3)-2 photoanodes(Fe_(2)O_(3)-FNNO),whose photocurrent density could reach to 2.5 mA·cm at 1.23 V vs.RHE(reversible hydrogen electrode,AM 1.5G).Further experimental and characterization studies reveal that the 2+3+reduction properties of NH3 and formation of N―O bond could enhance the ratio of Fe and Ni in FeNi cocatalysts to offer more active sites in the PEC water splitting.Thus,this work provides a potential and promising route to developing high-performance Fe_(2)O_(3) photoanodes.
作者
罗亿
毕迎普
LUO Yi;BI Ying-pu(State Key Laboratory for Oxo Synthesis and Selective Oxidation,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,Lanzhou 730000,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处
《分子催化(中英文)》
CAS
CSCD
北大核心
2024年第6期521-529,I0002,共10页
Journal of Molecular Catalysis(China)
基金
国家自然科学基金资助项目(No.22372181)。
作者简介
罗亿(1997-),男,硕士研究生,主要从事于光电催化研究.E-mail:luoyi@licp.cas.cn;通信联系人:毕迎普,E-mail:yingpubi@licp.cas.cn.