期刊文献+

阵列脉冲远场涡流检测的信号降噪方法

Array pulsed remote field eddy current testing signal denoising method
在线阅读 下载PDF
导出
摘要 针对普通脉冲远场涡流检测(PRFECT)无法定位管道缺陷周向位置的缺点,通过增加接收线圈数量,改变接收线圈和激励线圈的相对位置,设计了一种新型阵列式脉冲远场涡流检测探头。并且针对检测出的信号微弱且混杂噪声干扰的问题,提出了一种连续变分模态分解(SVMD)和奇异值分解(SVD)联合的信号降噪方法。首先将信号通过连续变分模态分解分解为一系列模态函数,然后通过皮尔逊相关系数筛选出用于重构的信号分量,再使用奇异值分解降噪方法对这些分量进行降噪,将降噪后的分量叠加可以得到重构信号,仿真和实验结果证明,新探头可以有效定位管道缺陷位置,新算法可以将关键信号降噪误差比降低至9.30,相较于目前算法有明显性能提高。 To address the limitations of conventional pulsed remote field eddy current testing(PRFECT)in accurately determining the circumferential position of defects,we propose an innovative array-based PRFECT probe.This method involves increasing the number of receiving coils and modifying the relative positions of the receiving and excitation coils to enhance defect localization capabilities.To address the issue of weak signals detected,a hybrid signal denoising technique combining successive variational mode decomposition(SVMD)and singular value decomposition(SVD)is introduced.Initially,the signal is decomposed into a series of modal functions using SVMD.Subsequently,components for reconstruction are selected based on the Pearson correlation coefficient.The retained components are then denoised using the SVD method,and these denoised components are superimposed to reconstruct the signal.Both simulations and experimental results demonstrate that the proposed novel probe effectively locates defect positions,The proposed algorithm can improve the Denoising Signal-to-Noise Ratio of the measured key signal to 9.30,better than traditional algorithm.
作者 朱冠诚 刘大生 Zhu Guancheng;Liu Dasheng(School of Electronic Information and Electrical Engineering,Shanghai Jiaotong University,Shanghai 200240,China)
出处 《电子测量技术》 北大核心 2024年第19期79-87,共9页 Electronic Measurement Technology
基金 教育部产学合作协同育人项目(230803711295726)资助。
关键词 脉冲远场涡流 信号降噪 连续变分模态分解 奇异值分解 PRFECT signal denoising SVMD SVD
作者简介 朱冠诚,硕士研究生,主要研究方向为无损检测信号处理。E-mail:zgc1231@sjtu.edu.cn;通信作者:刘大生,博士,硕士生导师,主要研究方向为精密仪器及机械。E-mail:dsliu@sjtu.edu.cn。
  • 相关文献

参考文献12

二级参考文献97

共引文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部