摘要
掌握真实的车辆荷载情况对桥梁设计及智能管养具有重要意义。为此,基于计算机视觉技术和深度学习,建立了一种用于桥梁上多车检测和跟踪的算法。首先,收集交通监控视频建立了多种类型车辆的外观特征数据库。其次,建立了多车检测算法,并在所搭建的数据库上对其进行训练和测试。随后,将性能最佳的检测算法与跟踪算法相结合,进而完成桥梁上多车目标的连续跟踪。最后,依托某跨海大桥的交通监控视频对所提方法进行了验证,并评估了算法的可靠性和准确性。实验结果表明:提出的多车检测和跟踪算法的检测准确率较高,跟踪效果较好,在视频序列中稳定性较好,可成功完成桥梁上多车的连续跟踪任务。研究成果可为后续桥梁设计及智能化管养提供数据参考。
It is of great significance to know the real vehicle load condition for bridge design and intelligent maintenance.Therefore,based on computer vision technology and deep learning,the multi-vehicle detection and tracking algorithm on the bridge is established in this paper.Firstly,a vehicle appearance dataset containing multiple types is established by collecting traffic surveillance videos.Secondly,the multi-vehicles detection algorithms is established and trained and tested on the dataset.Then,the algorithm with the best performance is combined with the best tracking algorithm to complete the multi-vehicle target tracking on the bridge.Finally,based on the traffic monitoring data of a long-span bridge,the improved effect of the algorithm is verified,and the reliability and accuracy of the proposed algorithm are verified.The experimental results show that the proposed multi-vehicle detection and tracking algorithm has high detection accuracy,better tracking effect and stability in video sequences,which can successfully complete the continuous tracking of multi-vehicles on bridges.The research results can provide data reference for the subsequent intelligent management and maintenance of bridges.
作者
赵智勇
Zhao Zhiyong(CCCC First Highway Consultants Co.,Ltd.,Xi’an 710075,China)
出处
《市政技术》
2024年第12期174-181,共8页
Journal of Municipal Technology
关键词
桥梁工程
计算机视觉
车辆荷载
目标检测
目标跟踪
bridge engineering
computer vision
vehicle load
target detection
target tracking
作者简介
赵智勇,男,工程师,硕士,主要研究方向为桥梁工程,E-mail:1035407715@qq.com。