期刊文献+

The abscisic acid-responsive transcriptional regulatory module CsERF110-CsERF53 orchestrates citrus fruit coloration 被引量:5

原文传递
导出
摘要 Carotenoid biosynthesis is closely associated with abscisic acid(ABA)during the ripening process of non-climacteric fruits,but the regulatory mechanism that links ABA signaling to carotenoid metabolism remains largely unclear.Here,we identified two master regulators of ABA-mediated citrus fruit coloration,CsERF110 and CsERF53,which activate the expression of carotenoid metabolism genes(CsGGPPS,CsPSY,CsPDS,CsCRTISO,CsLCYB2,CsLCYE,CsHYD,CsZEP,and CsNCED2)to facilitate carotenoid accumulation.Further investigations showed that CsERF110 not only activates the expression of CsERF53 by binding to its promoter but also interacts with CsERF53 to form the transcriptional regulatory module CsERF110-CsERF53.We also discovered a positive feedback regulatory loop between the ABA signal and carotenoid metabolism regulated by the transcriptional regulatory module CsERF110-CsERF53.Our results reveal that the CsERF110-CsERF53 module responds to ABA signaling,thereby orchestrating citrus fruit coloration.Considering the importance of carotenoid content for citrus and many other carotenoid-rich crops,the revelation of molecular mechanisms that underlie ABA-mediated carotenoid biosynthesis in plants will facilitate the development of transgenic/gene-editing approaches,further contributing to improving the quality of citrus and other carotenoid-rich crops.
出处 《Plant Communications》 SCIE CSCD 2024年第11期157-172,共16页 植物通讯(英文)
基金 National Key R&D Program of China(2023YFD2300600) National Natural Science Foundation of China(no.31930095) National Modern Agricultural(Citrus)Technology Systems of China(no.CARS-27).
作者简介 Correspondence:Xiuxin Deng,xxdeng@mail.hzau.edu.cn。
  • 相关文献

参考文献9

二级参考文献101

  • 1Auldridge ME, McCarty DR, Klee HJ (2006). Plant carotenoid cleavage oxygenases and their apocarotenoid products. Curr. Opin. Plant Biol. 9, 315-321.
  • 2Botella-Pavia P, Rodriguez-Concepcion M (2006). Carotenoid biotechnology in plants for nutritionally improved foods. Physiol. Plant. 126, 369-381.
  • 3Cunningham FX, Gantt E (1998). Genes and enzymes of carotenoid biosynthesis in plants. Annu. Rev. Plant Physiol. Plant MoL Biol. 49, 557-583.
  • 4Cunningham FX, Gantt E (2005). A study in scarlet: enzymes of ketocarotenoid biosynthesis in the flowers of Adonis aestivalis. Plant J. 41,478-492.
  • 5Cuttriss A J, Chubb AC, Alawady A, Grimm B, Pogson BJ (2007). Regulation of lutein biosynthesis and prolamellar body formation in Arabidopsis. Funct. Plant Biol. 34, 663-672.
  • 6D'Ambrosio C, Giorio G, Marino I, Merendino A, Petrozza A, Salfi Let al. (2004). Virtually complete conversion of lycopene into β- carotene in fruits of tomato plants transformed with the tomato lycopene beta-cyclase (tlcy-b) cDNA. Plant Sci. 166, 207-214.
  • 7Davuluri GR, van Tuinen A, Fraser PD, Manfredonia A, Newman R, Burgess D et al. (2005). Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and fiavonoid content in tomatoes. Nat. Biotechnol. 23, 890-895.
  • 8DellaPenna D, Pogson BJ (2006). Vitamin synthesis in plants: tocopherols and carotenoids. Annu. Rev. Plant Biol. 57, 711-738.
  • 9Diretto G, AI-Babili S, Tavazza R, Papacchioli V, Beyer P, Giuliano G (2007). Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway, PLoS ONE 2, e350,
  • 10Diretto G, Tavazza R, Welsch R, Pizzichini D, Mourgues F, Papacchioli Vet al, (2006). Metabolic engineering of potato tuber carotenoids through tuber-specific silencing of lycopene epsilon cyclase. BMC Plant Biol. 6. 13.

共引文献254

同被引文献92

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部