期刊文献+

新型CF_(x)锂原电池自放电率的比较研究及其应用建议

Comparative study on self-discharge rate of new CF_(x) lithium primary batteries and recommendations for their use
在线阅读 下载PDF
导出
摘要 新型高比能氟化碳(CF_(x))材料不断涌现,使Li/CF_(x)原电池的比能量/比功率特性持续提升,特别是功率型Li/CF_(x)电池已开始用于小型商业化动力系统中,可能成为比能量最高的动力型锂原电池。但不同类型CF_(x)材料制备的Li/CF_(x)锂原电池的自放电情况尚缺乏比较研究。本文选择4种典型的新型CF_(x)材料,根据其应用目标分为能量型和功率型材料,其中2种能量型CFx的F/C比接近1,具有更稳定而饱和的C—F化学键,而2种功率型CF_(x)材料F/C比略低,离子型C—F键更多,具有更好的导电性和更好的倍率性能。通过工业化设备工艺制备成的BR18650型Li/CF_(x)原电池经55℃高温储存后,无论是否放电过,能量型电池的自放电率几乎为0,具有长寿命货架储存特性;而功率型电池55℃储存后,放电深度(DOD)越高的电池的内阻越大、自放电率也越大,锂原电池常用的预放电处理工艺会导致功率型电池的自放电率上升,意味着功率型电池一旦预放电激活后就应立即投入使用。功率型电池间歇式使用会导致其自放电率增大和内阻增加,原因可能是松散LiF保护膜的破坏造成新鲜CF_(x)界面暴露于电解液中继续反应,但能量型CF_(x)材料因其具有更多稳定的饱和C—F共价键而影响较小。 The emergence of new high specific energy fluorinated carbon(CF_(x))materials has continuously improved the specific energy/specific power characteristics of Li/CF_(x) primary batteries,especially the power type Li/CF_(x) batteries have begun to be used in small commercial power systems and may become the power type lithium primary batteries with the highest specific energy.However,there is a lack of comparative study on the self-discharge of Li/CF_(x) lithium primary batteries prepared from different types of CF_(x) materials.This article selects four typical novel CF_(x) materials that are divided into energy type and power type materials according to their applications,among which two energy type CF_(x) materials have F/C ratios close to 1 and more stable and saturated C-F chemical bonds,while two power type CF_(x) materials have lower F/C ratios and more ionic C-F bonds,resulting in better conductivity and rate performance.After being stored at a high temperature of 55℃,the self-discharge rate of the industrially prepared BR18650 Li/CF_(x) battery,regardless of whether it has been discharged or not,is almost zero,making it suitable for long-life shelf storage.However,for power batteries stored at 55℃,the higher the depth of discharge(DOD),the greater the internal resistance and self-discharge rate of the battery.The pre-discharge treatment that is commonly used in lithium primary battery industry can lead to an increase in the self-discharge rate of power type batteries,which means that power type batteries should be put into use immediately after pre-discharge activation.Intermittent use of power type batteries can lead to an increase in their self-discharge rate and internal resistance,which may be due to the damage of the loose LiF protective film causing the fresh CF_(x) interface to be exposed to the electrolyte and continuous reaction,but the energy type CF_(x) material has less impact due to its more stable saturated C-F covalent bonds.
作者 杨微 李治国 赖彩婷 赵瑞瑞 李瑀 周盈科 黄依玲 朱立才 封伟 王文龙 袁中直 YANG Wei;LI Zhiguo;LAI Caiting;ZHAO Ruirui;LI Yu;ZHOU Yingke;HUANG Yiling;ZHU Licai;FENG Wei;WANG Wenlong;YUAN Zhongzhi(EVE Energy Co.Ltd,Huizhou 516006,Guangdong,China;School of Materials Science and Engineering,Tianjin University,Tianjin 300072,China;The State Key Laboratory of Refractories and Metallurgy,Wuhan University of Science and Technology,Wuhan 430081,Hubei,China;School of Chemistry,South China Normal University,Guangzhou 510006,Guangdong,China;Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China)
出处 《储能科学与技术》 CAS CSCD 北大核心 2024年第11期3742-3753,共12页 Energy Storage Science and Technology
关键词 锂/氟化碳电池 原电池 自放电率 lithium/carbon fluoride battery primary battery self-discharge rate
作者简介 第一作者:杨微(1995-),女,硕士,研究方向为锂原电池研发,E-mail:085265@evebattery.com;通信作者:赖彩婷,硕士,研究方向为锂电池,E-mail:caitinglai1991@163.com;李瑀,教授,研究方向为氟化物在储能器件中的应用,E-mail:2022500016@buct.edu.cn;袁中直,教授,研究方向为电化学及电化学储能材料与器件,E-mail:yuanzz@scnu.edu.cn。
  • 相关文献

参考文献4

二级参考文献14

  • 1YAZAMI R, HAMWI A, GUER1N K,et al. Fluorinated carbon nano- fibres for high energy and high power densities primary lithium bat- teries[J]. Electrochem Comm, 2007, 9: 1950-1955.
  • 2ZHANG Q, ASTORG S D, XIAO P, et al. Carbon-coated fluorinated graphite for high energy and high power densities primary lithium batteries[J]. J Power Sources, 2010, 195: 2914-2917.
  • 3REDDY M A, BREITUNG B, FICHTNER M, et al. Improving the energy density and power density of CFx by mechanical milling: a primary lithium battery electrode [J]. ACS Appl Mater Interfaces, 2013, 5: 11207-11211.
  • 4ZHANG S S, FOSTER D, WOLFENSTINE J, et al. Electrochemical characteristic and discharge mechanism of a primary Li/CFx cell[J]. J Power Sources, 2009, 187: 233-237.
  • 5READ J, COLLINS E, PIEKARSKI B, et al. LiF formation and cathode welling in the Li/CF, battery[J]. J Electrochem Soc,2011, 158(5): A504-A510.
  • 6DAVIS S, TAKEUCHI E S, TIEDEMANN W, et al, Simulation of the Li-CF system[J]. J Electrochem Soc, 2007,154 (5): A477-A480.
  • 7GOMADAM P M, MERRITT D R, SCOTT E R, et al, Modeling Li/CF-SVO hybrid-cathode batteries[J]. J Electrochem Soc, 2007, 154 (11): A1058-A1064.
  • 8. GOMADAM P M, MERRITT D R, SCOTT E R, et al. Modeling lithium/hybrid-cathode batteries [J]. J Power Sources, 2007, 174: 872-876.
  • 9HAGIWORO R, NAKAJIMA T, WATANABE N. Kinetic study of discharge reaction of lithium-graphite fluoride cell[J]. J Electrochem Soc, 1988, 135(9):2128-2133.
  • 10刘春娜.锂氟化碳电池技术进展[J].电源技术,2012,36(5):624-625. 被引量:15

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部