期刊文献+

基于改进灰狼算法的柔性作业车间调度

Flexible Job-shop Scheduling Based on Improved Gray Wolf Algorithm
在线阅读 下载PDF
导出
摘要 针对柔性作业车间调度问题(flexible job-shop scheduling problem,FJSP),提出了一种改进灰狼算法(improved grey wolf optimizer,IGWO),使车间加工时间缩短。首先,以工序和机器限制为约束条件,建立以最大作业时间最小为目标的数学模型;其次,为解决灰狼算法(grey wolf optimizer,GWO)易陷入局部最优的问题,增添外部档案集并使用IPOX和MPX进行变异得到新的档案集,模拟退火温度引入选择因子从而使灰狼算法随迭代次数增加改变搜索范围,来提高全局搜索能力;最后,通过仿真实验验证了改进灰狼算法的有效性。 Aiming at the flexible job-shop scheduling problem(FJSP),an improved grey wolf optimizer(IGWO)is proposed to shorten the processing time of the workshop.Firstly,taking into account the process and machine restrictions as constraints,establish a mathematical model with the objective of minimizing the maximum operation time.Secondly,in order to solve the problem that grey wolf optimizer(GWO)is easy to fall into local optimum,the external archive set is added and the IPOX and MPX are used to mutate to obtain a new archive set.The simulated annealing temperature introduces a selection factor so that the grey wolf algorithm changes the search range with the increase of the number of iterations to improve the global search ability.Finally,the effectiveness of the improved grey wolf algorithm is verified by simulation experiments.
作者 吕展辉 闫莉 李雨菲 LV Zhanhui;YAN Li;LI Yufei(School of Mechatronic Engineering,Xi’an Technological University,Xi’an 710021,China)
出处 《自动化与仪表》 2024年第11期18-22,共5页 Automation & Instrumentation
基金 陕西省科技厅项目(2023-YBGY-146) 大学生创新创业训练计划国家级项目(202310702002)。
关键词 柔性作业车间调度 灰狼算法 外部档案集 退火温度 flexible job shop scheduling grey wolf optimizer(GWO) external archive set annealing temperature
作者简介 吕展辉(2002-),男,本科,研究方向为智能调度算法;闫莉(1973-),女,博士,教授,研究方向为智能产线规划与调度。
  • 相关文献

参考文献11

二级参考文献55

  • 1杨晓梅,曾建潮.遗传算法求解柔性job shop调度问题[J].控制与决策,2004,19(10):1197-1200. 被引量:35
  • 2张超勇,饶运清,李培根,邵新宇.柔性作业车间调度问题的两级遗传算法[J].机械工程学报,2007,43(4):119-124. 被引量:105
  • 3Takeshi Yamada, Ryohei Nakana. Genetic algorithms for job-shop scheduling problems[A]. Proc of Modern Heuristic for Decision Support [C]. London, 1997. 67-81.
  • 4Jose Fernando Gonealves, Jorge Jose de Magalhaes Mendes, Maurieio G C Resende. A hybrid genetic algorithm for the job shop scheduling problem[R].AT&T Labs Research,2002.
  • 5Davis L. Handbook of Genetic Algorithms[M]. New York: Van Nostrand Reinhold, 1991.
  • 6Nasr N, Elsayed E A. Job shop scheduling with alternative machine[J]. Int J of Production Research, 1990,28(9): 1595-1609.
  • 7Giaro. NP-hardness of compact scheduling in simplified open and flow shops. European Journal of Operational Research, 2001, 30: 90~98
  • 8Kaschel J, Tobias T, Bernd Z. Real-time dynamic shop floor scheduling using evolutionary algorithms. Int. J. Production Economics, 2002, 79:113~ 120
  • 9Masahiro A, Masahiko F, Ichiro I. Anoptimization-oriented method for simulation-based job shop scheduling incorporating capacity adjustment function. Int. J. Production Economics, 2003, 85:359~369
  • 10Dirk C M, Christian B. Discrete optimization an efficient genetic algorithm for job shop scheduling with tardiness objectives. European Journal of Operational Research, 2004,155:616~630

共引文献210

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部