期刊文献+

Study on the thermo-hydraulic behaviors of the new-pattern fuel assembly in lead-based fast reactors based on OpenFOAM 被引量:1

在线阅读 下载PDF
导出
摘要 To improve the heat transfer efficiency of the coolant in lead-based fast reactors,this study optimized the configuration and rotational direction of the spacer wires in fuel assemblies to design a new-pattern fuel assembly.This study conducted detailed comparisons between traditional and new pattern fuel assembly rod bundles utilizing the open-source computational fluid dynamics platform,OpenFOAM.The results indicated that the new design may significantly reduce the pressure drop along the rod bundle,which is beneficial for lowering the pressure drop.Furthermore,this new design improved coolant mixing in the subchannels,which facilitated a more uniform temperature distribution and lower thermal gradients at the assembly outlet.These factors collectively reduced the thermal fatigue and creep in nearby internal components.Overall,the newpattern fuel assembly proposed in this study may have better heat transfer performance,thereby enhancing the Integrated Thermal-Hydraulic Factor by 48.2% compared to the traditional pattern.
出处 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第10期250-263,共14页 核技术(英文)
基金 supported partly by the Ministry of Science and Technology of the People’s Republic of China(No.2020YFB1902100) the China Postdoctoral Science Foundation(No.2023M731458) the Science and Technology Program of Gansu Province China(No.23JRRA1099) the Postdoctoral Fellowship Program of CPSF(No.GZB20230278) financially supported by the Shanghai Municipal Commission of Economy and Informatization(No.GYQJ-2018-2-02)。
作者简介 Corresponding author:You-Peng Zhang,zhangyp@fudan.edu.cn。
  • 相关文献

参考文献4

二级参考文献39

  • 1H. Darcy, Les Fontaines Publiques de la Ville de Dijon (Dalmont, Paris, 1856).
  • 2S. Ergun, Fluid flow through packed columns. Chem. Eng. Prog. 48, 89-94 (1952).
  • 3A. Khaled, K. Vafal, The role of porous media in modeling flow and heat transfer in biological tissues. Int. J. Heat Mass Transf. 46, 4989-5003 (2003). doi:10.1016lS0017-9310(03)00301-6.
  • 4Z. Chen, G. Huan, Y. Ma, Computational Methods for Mul- tiphase Flows in Porous Media (Society for Industrial and Applied Mathematics (SIAM), Dallas, 2006).
  • 5O. Zienkiewicz, R. Taylor, J. Zhu, The Finite Element Method for Fluid Dynamics, 6th edn. (Elsevier, New York, 2005).
  • 6R. Lewis, B. Schrefler, The Finite Element Method in the Deformation and Consolidation of Porous Media (Wiley, Chichester, 1998).
  • 7D. Nield, A. Bejan, Convection in Porous Media (Springer, New York, 1992).
  • 8M. Kaviany, Principles of Heat Transfer in Porous Media (Springer, New York, 1991).
  • 9C. Hsu, P. Cheng, Thermal dispersion in a porous medium. Int. J. Heat Mass Transl. 33(8), 1587-1597 (1990). doi:10.1016/ 0017-9310(90)90015-M.
  • 10B. Antohe, J. Lage, A general two-equation macroscopic turbu- lence model for incompressible flow in porous media. Int. J. Heat Mass Transf. 40(13), 3013-3024 (1997). doi:10.1016/S0017- 9310(96)00370-5.

共引文献13

同被引文献13

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部