期刊文献+

人工智能在宿主与病原体蛋白质互作预测中的应用进展 被引量:1

Advances in the Application of Artificial Intelligence to Predict Host-Pathogen Protein Interactions
原文传递
导出
摘要 宿主与病原体之间的蛋白质-蛋白质互作(Host-pathogen protein-protein interaction,HP-PPI)是病原体感染宿主的关键分子事件,准确识别HP-PPI对于理解宿主的免疫防御机制、病原体的致病机制,以及研发抗感染药物都具有重要意义。近年来,蛋白质互作实验技术的发展及其在宿主与病原体互作研究中的应用,积累了大量的HPPPI数据,于是人工智能技术逐渐在HP-PPI预测研究领域中脱颖而出。本文综述了人工智能方法在HP-PPI预测研究领域中的应用,首先介绍了基于人工智能方法识别HP-PPI的任务流程,总结了收录HP-PPI数据的常用数据库;然后重点对机器学习和深度学习两大类人工智能方法在HP-PPI预测研究领域中的应用进行分类归纳,介绍了部分经典算法模型的基本原理、特征选择和模型评估结果等;最后,分析了人工智能方法预测HP-PPI面临的问题及挑战,以期为宿主与病原体互作研究领域的科研人员提供思路和参考。 Host-pathogen protein-protein interaction(HP-PPI)is a key molecular event in host during infection by pathogens.Elucidation of HP-PPI is crucial for understanding the immune defense mechanism of the host,the mechanism of pathogenesis,and development of anti-infection drugs.In recent years,the development of PPI detection methods and their application in host-pathogen interaction studies have accumulated a large amount of HP-PPI data,which help the artificial intelligence(AI)emerge as outstanding techniques in the research field of HP-PPI prediction.This paper reviews the application of AI techniques in HP-PPI prediction.Firstly,the workflow of AI-aided identification of HP-PPI is outlined,and the commonly used databases containing HP-PPI data are summarized.Subsequently,we focus on the application of two major categories of AI methods,namely machine learning and deep learning,in the research field of HP-PPI prediction,and present the fundamentals of several classical algorithmic models,feature selection methods and model evaluation results.Finally,the problems and challenges faced by AI-aided HP-PPI prediction were discussed in detail to provide insights for researchers in studying host-pathogen interactions.
作者 任碧燕 刘璐 舒坤贤 曾垂省 代劲 刘川 李娜 REN Biyan;LIU Lu;SHU Kunxian;ZENG Chuisheng;DAI Jin;LIU Chuan;LI Na(Chongqing Key Laboratory of Big Data for Bio Intelligence,School of Life Health Information Science and Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;School of Software Engineering,Chongqing University of Posts and Telecommunications,Chongqing400065,China)
出处 《病毒学报》 CAS CSCD 北大核心 2024年第5期1121-1136,共16页 Chinese Journal of Virology
基金 重庆市教委科学技术研究项目(项目号:KJQN202300616),题目:面向宿主与病原菌互作的机器学习关键技术研究。
关键词 宿主-病原体互作 蛋白质-蛋白质互作 机器学习 深度学习 Host-pathogen interaction Protein-protein interaction Machine learning Deep learning
作者简介 任碧燕(1995-),女,从事机器学习与深度学习应用研究,Email:s220502009@stu.cqupt.edu.cn;通信作者:刘川(1986-),男,讲师,从事人工智能与多组学数据挖掘,Email:liuchuan@cqupt.edu.cn;通信作者:李娜(1987-),女,讲师,从事人工智能与植物抗病分子生物学研究,Email:lina@cqupt.edu.cn。
  • 相关文献

参考文献11

二级参考文献12

  • 1Jack Hanson,Kuldip K.Paliwal,Thomas Litfin,Yaoqi Zhou.SPOT-Disorder2: Improved Protein Intrinsic Disorder Prediction by Ensembled Deep Learning[J].Genomics, Proteomics & Bioinformatics,2019,17(6):645-656. 被引量:6
  • 2李莉,钟海燕,樊茂,奎莉越,李惠英,张建英.参与EV71复制的宿主因素hnRNP K、RTN3的分子作用机制研究进展[J].病毒学报,2015,31(2):197-200. 被引量:3
  • 3李帅,蒋西子,梁伟芳,陈思涵,张享享,左登攀,胡亚会,江彤.利用酵母双杂交系统筛选与草莓镶脉病毒P6蛋白互作的森林草莓寄主因子[J].中国农业科学,2017,50(18):3519-3528. 被引量:3
  • 4王楷宬,庄青叶,邱源,侯广宇.水貂冠状病毒中国分离株全基因序列测定及分析[J].中国动物检疫,2017,34(12):88-91. 被引量:7
  • 5王楷宬,李阳,庄青叶,姜利建,张富友,姜楠,刘华雷.禽源冠状病毒监测简报[J].中国动物检疫,2020,37(2):1-2. 被引量:17
  • 6董雅琴,张慧,张锋,刘爽,崔进,李晓成,魏荣.猪源冠状病毒监测简报[J].中国动物检疫,2020,37(3):1-2. 被引量:12
  • 7张兰桥,赖崇德,戴益民,张庆华,钟其旺,赖芬菊.酵母双杂交筛选与胞内劳森菌LI0902互作宿主蛋白[J].中国兽医学报,2020,40(1):72-76. 被引量:2
  • 8曾秀,张兰桥,周姣,王婧祺,戴益民,张锦华.猪源A型产气荚膜梭菌β2毒素与宿主细胞互作蛋白的筛选鉴定[J].中国预防兽医学报,2019,41(12):1204-1209. 被引量:4
  • 9崔尚金,赵花芬,纪志辉,石文达,熊国英,梁琳,陈海博,王祉国,刘坡,韩武,张伟,王宏伟.对24例宠物临诊病例检测未发现新型冠状病毒(SARS-CoV-2)核酸阳性[J].病毒学报,2020,36(2):170-175. 被引量:8
  • 10M.Ablikim,M.N.Achasov,P.Adlarson,S.Ahmed,M.Albrecht,M.Alekseev,A.Amoroso,F.F.An,Q.An,Y.Bai,O.Bakina,R.Baldini Ferroli,Y.Ban,K.Begzsuren,J.V.Bennett,N.Berger,M.Bertani,D.Bettoni,F.Bianchi,J Biernat,J.Bloms,I.Boyko,R.A.Briere,L.Calibbi,H.Cai,X.Cai,A.Calcaterra,G.F.Cao,N.Cao,S.A.Cetin,J.Chai,J.F.Chang,W.L.Chang,J.Charles,G.Chelkov,Chen,G.Chen,H.S.Chen,J.C.Chen,M.L.Chen,S.J.Chen,Y.B.Chen,H.Y.Cheng,W.Cheng,G.Cibinetto,F.Cossio,X.F.Cui,H.L.Dai,J.P.Dai,X.C.Dai,A.Dbeyssi,D.Dedovich,Z.Y.Deng,A.Denig,Denysenko,M.Destefanis,S.Descotes-Genon,F.De Mori,Y.Ding,C.Dong,J.Dong,L.Y.Dong,M.Y.Dong,Z.L.Dou,S.X.Du,S.I.Eidelman,J.Z.Fan,J.Fang,S.S.Fang,Y.Fang,R.Farinelli,L.Fava,F.Feldbauer,G.Felici,C.Q.Feng,M.Fritsch,C.D.Fu,Y.Fu,Q.Gao,X.L.Gao,Y.Gao,Y.Gao,Y.G.Gao,Z.Gao,B.Garillon,I.Garzia,E.M.Gersabeck,A.Gilman,K.Goetzen,L.Gong,W.X.Gong,W.Gradl,M.Greco,L.M.Gu,M.H.Gu,Y.T.Gu,A.Q.Guo,F.K.Guo,L.B.Guo,R.P.Guo,Y.P.Guo,A.Guskov,S.Han,X.Q.Hao,F.A.Harris,K.L.He,F.H.Heinsius,T.Held,Y.K.Heng,Y.R.Hou,Z.L.Hou,H.M.Hu,J.F.Hu,T.Hu,Y.Hu,G.S.Huang,J.S.Huang,X.T.Huang,X.Z.Huang,Z.L.Huang,N.Huesken,T.Hussain,W.Ikegami Andersson,W.Imoehl,M.Irshad,Q.Ji,Q.P.Ji,X.B.Ji,X.L.Ji,H.L.Jiang,X.S.Jiang,X.Y.Jiang,J.B.Jiao,Z.Jiao,D.P.Jin,S.Jin,Y.Jin,T.Johansson,N.Kalantar-Nayestanaki,X.S.Kang,R.Kappert,M.Kavatsyuk,B.C.Ke,I.K.Keshk,T.Khan,A.Khoukaz,P.Kiese,R.Kiuchi,R.Kliemt,L.Koch,O.B.Kolcu,B.Kopf,M.Kuemmel,M.Kuessner,A.Kupsc,M.Kurth,M.G.Kurth,W.Kuhn,J.S.Lange,P.Larin,L.Lavezzi,H.Leithoff,T.Lenz,C.Li,Cheng Li,D.M.Li,F.Li,F.Y.Li,G.Li,H.B.Li,H.J.Li,J.C.Li,J.W.Li,Ke Li,L.K.Li,Lei Li,P.L.Li,P.R.Li,Q.Y.Li,W.D.Li,W.G.Li,X.H.Li,X.L.Li,X.N.Li,X.Q.Li,Z.B.Li,H.Liang,H.Liang,Y.F.Liang,Y.T.Liang,G.R.Liao,L.Z.Liao,J.Libby,C.X.Lin,D.X.Lin,Y.J.Lin,B.Liu,B.J.Liu,C.X.Liu,D.Liu,D.Y.Liu,F.H.Liu,Fang Liu,Feng Liu,H.B.Liu,H.M.Liu,Huanhuan Liu,Huihui Liu,J.B.Liu,J.Y.Liu,K.Y.Liu,Ke Liu,Q.Liu,S.B.Liu,T.Liu,X.Liu,X.Y.Liu,Y.B.Liu,Z.A.Liu,Zhiqing Liu,Y.F.Long,X.C.Lou,H.J.Lu,J.D.Lu,J.G.Lu,Y.Lu,Y.P.Lu,C.L.Luo,M.X.Luo,P.W.Luo,T.Luo,X.L.Luo,S.Lusso,X.R.Lyu,F.C.Ma,H.L.Ma,L.L.Ma,M.M.Ma,Q.M.Ma,X.N.Ma,X.X.Ma,X.Y.Ma,Y.M.Ma,F.E.Maas,M.Maggiora,S.Maldaner,S.Malde,Q.A.Malik,A.Mangoni,Y.J.Mao,Z.P.Mao,S.Marcello,Z.X.Meng,J.G.Messchendorp,G.Mezzadri,J.Min,T.J.Min,R.E.Mitchell,X.H.Mo,Y.J.Mo,C.Morales Morales,N.Yu.Muchnoi,H.Muramatsu,A.Mustafa,S.Nakhoul,Y.Nefedov,F.Nerling,I.B.Nikolaev,Z.Ning,S.Nisar,S.L.Niu,S.L.Olsen,Q.Ouyang,S.Pacetti,Y.Pan,M.Papenbrock,P.Patteri,M.Pelizaeus,H.P.Peng,K.Peters,A.A.Petrov,J.Pettersson,J.L.Ping,R.G.Ping,A.Pitka,R.Poling,V.Prasad,M.Qi,T.Y.Qi,S.Qian,C.F.Qiao,N.Qin,X.P.Qin,X.S.Qin,Z.H.Qin,J.F.Qiu,S.Q.Qu,K.H.Rashid,C.F.Redmer,M.Richter,M.Ripka,A.Rivetti,V.Rodin,M.Rolo,G.Rong,J.L.Rosner,Ch.Rosner,M.Rump,A.Sarantsev,M.Savrie,K.Schoenning,W.Shan,X.Y.Shan,M.Shao,C.P.Shen,P.X.Shen,X.Y.Shen,H.Y.Sheng,X.Shi,X.D Shi,J.J.Song,Q.Q.Song,X.Y.Song,S.Sosio,C.Sowa,S.Spataro,F.F.Sui,G.X.Sun,J.F.Sun,L.Sun,S.S.Sun,X.H.Sun,Y.J.Sun,Y.K Sun,Y.Z.Sun,Z.J.Sun,Z.T.Sun,Y.T Tan,C.J.Tang,G.Y.Tang,X.Tang,V.Thoren,B.Tsednee,I.Uman,B.Wang,B.L.Wang,C.W.Wang,D.Y.Wang,H.H.Wang,K.Wang,L.L.Wang,L.S.Wang,M.Wang,M.Z.Wang,Wang Meng,P.L.Wang,R.M.Wang,W.P.Wang,X.Wang,X.F.Wang,X.L.Wang,Y.Wang,Y.F.Wang,Z.Wang,Z.G.Wang,Z.Y.Wang,Zongyuan Wang,T.Weber,D.H.Wei,P.Weidenkaff,H.W.Wen,S.P.Wen,U.Wiedner,G.Wilkinson,M.Wolke,L.H.Wu,L.J.Wu,Z.Wu,L.Xia,Y.Xia,S.Y.Xiao,Y.J.Xiao,Z.J.Xiao,Y.G.Xie,Y.H.Xie,T.Y.Xing,X.A.Xiong,Q.L.Xiu,G.F.Xu,L.Xu,Q.J.Xu,W.Xu,X.P.Xu,F.Yan,L.Yan,W.B.Yan,W.C.Yan,Y.H.Yan,H.J.Yang,H.X.Yang,L.Yang,R.X.Yang,S.L.Yang,Y.H.Yang,Y.X.Yang,Yifan Yang,Z.Q.Yang,M.Ye,M.H.Ye,J.H.Yin,Z.Y.You,B.X.Yu,C.X.Yu,J.S.Yu,C.Z.Yuan,X.Q.Yuan,Y.Yuan,A.Yuncu,A.A.Zafar,Y.Zeng,B.X.Zhang,B.Y.Zhang,C.C.Zhang,D.H.Zhang,H.H.Zhang,H.Y.Zhang,J.Zhang,J.L.Zhang,J.Q.Zhang,J.W.Zhang,J.Y.Zhang,J.Z.Zhang,K.Zhang,L.Zhang,S.F.Zhang,T.J.Zhang,X.Y.Zhang,Y.Zhang,Y.H.Zhang,Y.T.Zhang,Yang Zhang,Yao Zhang,Yi Zhang,Yu Zhang,Z.H.Zhang,Z.P.Zhang,Z.Q.Zhang,Z.Y.Zhang,G.Zhao,J.W.Zhao,J.Y.Zhao,J.Z.Zhao,Lei Zhao,Ling Zhao,M.G.Zhao,Q.Zhao,S.J.Zhao,T.C.Zhao,Y.B.Zhao,Z.G.Zhao,A.Zhemchugov,B.Zheng,J.P.Zheng,Y.Zheng,Y.H.Zheng,B.Zhong,L.Zhou,L.P.Zhou,Q.Zhou,X.Zhou,X.K.Zhou,Xingyu Zhou,Xiaoyu Zhou,Xu Zhou,A.N.Zhu,J.Zhu,J.Zhu,K.Zhu,K.J.Zhu,S.H.Zhu,W.J.Zhu,X.L.Zhu,Y.C.Zhu,Y.S.Zhu,Z.A.Zhu,J.Zhuang,B.S.Zou,J.H.Zou,无.Future Physics Programme of BESⅢ[J].Chinese Physics C,2020,44(4). 被引量:547

共引文献16

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部