期刊文献+

不同合成方法对LiMn_(1.5)Ni_(0.5)O_(4)正极材料性能的影响 被引量:1

Effects of Different Synthesis Methods on the Properties of LiMn_(1.5)Ni_(0.5)O_(4) Cathode Materials
在线阅读 下载PDF
导出
摘要 采用固相法、溶胶-凝胶法合成LiMn_(1.5)Ni_(0.5)O_(4)。其中固相法前驱体采用高能球磨机细化颗粒,并采用整体升温和阶梯升温两种方式制备LiMn_(1.5)Ni_(0.5)O_(4),通过XRD表征发现合成的样品均不含有杂质。SEM表征显示通过高能球磨处理后的固相法制备的材料颗粒比溶胶-凝胶法小。其中阶梯升温固相法合成的LiMn_(1.5)Ni_(0.5)O_(4)循环稳定性较好,可能是因为退火过程中使得Fd3m结构中的少量Mn^(3+)变成Mn 4+转变成P4332结构,Mn^(3+)的量减少使得容量衰减减慢。整体升温固相法(G-LMNO)合成的样品首周放电比容量可达114.5 mAh g^(-1),只比溶胶-溶胶法合成的LiMn_(1.5)Ni_(0.5)O_(4)(S-LMNO)的放电比容量低1.3 mAhg^(-1)。但是其循环性能得到提升,经过50 th循环充放电,整体升温固相法(G-LMNO)合成的样品容量保持率高达98.43%,原因可能是溶胶-凝胶法合成的LiMn_(1.5)Ni_(0.5)O_(4)的粒子尺寸大,使得Li+的扩散路径变长,极化变大而导致循环性变差。 Solid method and sol-gel method are used to synthesize LiMn_(1.5)Ni_(0.5)O_(4) material.The precursor synthesized by solid method refines the particles by high-energy ball mill,and two heating ways,i.e.,overall heating and step heating,are used to prepare LiMn_(1.5)Ni_(0.5)O_(4).All the synthesized samples have no impurity as being determined by XRD.Comparison of the SEM images indicted that the solid-state sample had smaller particle than sol-gel sample,and electrochemical test further showed that it has better cycling stability than the latter phase,possibly because during the cooling,a small amount of Mn^(3+)in the Fd3m structure is converted to Mn 4+,thus changing into P4332 structure,and the reduction of the amount of Mn^(3+)slows down the capacity fading.The sample synthesized by overall heating solid method(G-LMNO)discharges specific capacity reaches 114.5 mAhg^(-1) in the initial cycle,while it was 1.3 mAhg^(-1) lower than the capacity discharged by LiMn_(1.5)Ni_(0.5)O_(4)(S-LMNO).However,it has better cycling stability,and after 50 th cycle charging and discharging,the retention rate of the capacity of the samples synthesized by G-LMNO reach 98.43%.The reason may be that the particle size of LiMn_(1.5)Ni_(0.5)O_(4) synthesized by sol-gel method is larger,which makes the diffusion path of Li+longer,polarization larger and cyclic property worse.
作者 宋丹丹 陈浩 曾艳红 詹晖 SONG Dandan;CHEN Hao;ZENG Yanhong;ZHAN Hui(Department of Biological and Environmental Engineering,Yueyang Vocational Technical College,Yueyang,Hunan 414000;College of Chemistry and Molecular Sciences,Wuhan University,Wuhan,Hubei 430072)
出处 《绍兴文理学院学报》 2024年第8期72-78,共7页 Journal of Shaoxing University
基金 湖南省教育厅科学研究优秀青年项目“生物质材料浸出锂离子电池正极材料有价金属回收的研究”(23B1099)。
关键词 高能量密度材料 锂离子电池 LiMn_(1.5)Ni_(0.5)O_(4) high-power material Lithium-ion battery LiMn_(1.5)Ni_(0.5)O_(4)
作者简介 宋丹丹(1990-),女,湖南岳阳人,岳阳职业技术学院生物环境工程学院讲师,研究方向:锂离子电池。E-mail:445224717@qq.com。
  • 相关文献

参考文献2

二级参考文献116

  • 1MengX, YangX, Sun X. Adv. Mater. , 2012, 24: 3589.
  • 2Choi N, Chen Z, Freunberger S A, Ji X, Sun Y, Amine K, Yushin G, Nazar L F, Cho J, Bruce P G. Angew. Chem. Int. Ed. , 2012, 51: 9994.
  • 3Dathar G K P, Sheppard D, Stevenson K J, Henkelman G.Chem. Mater. , 2011, 23: 4032.
  • 4Yang J, Tse J S. J. Mater. Chem. A, 2011, 115: 13045.
  • 5Bruce P G, Freunberger S A, Hardwick L J, Tarascon J. Nat. Mater. , 2011, 11 : 19.
  • 6Aravindan V, Sundaramurthy J, Kumar P S, Shubha N, Ling W C, Ramakrishna S, Madhavi S. Nanoscale, 2013, 5: 10636.
  • 7Mohanty D, Sefat A S, Li J L, Meisner R A, Rondinone A J, Payzant E A, Abraham D P, Wood D L Ⅲ, Daniel C. Phys. Chem. Chem. Phys. , 2013, 15 : 19496.
  • 8Lee H, Muralidharan P, Ruffo R, Mari C M, Cui Y, Kim D K. Nano Lett.. 2010. 10: 3852.
  • 9Waals K A, Johnson C S, Genthe J, Stoiber L C, Zehner W A, Anderson M A, Thackeray M M. J. Power Sources, 2010, 195: 4943.
  • 10Talik E, Lipinska L, Zajdel P, Zal O G A, Michalska M, Guzik A. J. Solid State Chem. Fran. , 2013, 206: 257.

共引文献15

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部