期刊文献+

Effect of cylinder wall parameters on the final packing density of mono-disperse spheres subject to three-dimensional vibrations Author links open overlay panel 被引量:1

原文传递
导出
摘要 Achieving densely packed particles is desirable within the industries of ceramics,pharmaceuticals,defence and additive manufacturing.In this work,we use the discrete element method(DEM)to determine the effect of wall parameters on the final packing density of mono-disperse spheres subject to 4 varying three-dimensional vibration and fill conditions.We focus specifically on the impact of the container wall parameters on the particles'final packing density.Following on from the validation of the DEM simulation the particle-wall coefficient of restitution,the particle-wall coefficient of rolling friction and the particle-wall coefficient of sliding friction were varied individually and the effect on the final packing density analysed.For relatively low particle-particle friction glass beads,the effect of these wall properties had no discernible effect on the final packing density achieved.Following on from these findings the particle-wall properties were varied at the extreme values of particle-particle coefficient of rolling friction and particle-particle coefficient of sliding friction.For a particle-particle coefficient of sliding friction=1,increases in particle-wall coefficient of restitution resulted in a minor increase in the final packing density of particles though this was not statistically significant.For a particle-particle coefficient of sliding friction=1,increases in particle-wall coefficient of rolling friction resulted in a minor decrease in the final packing density of the particles though again not to a degree where the trend can,with complete certainty,be distinguished from the random error across the repeats.Finally,when the particle-particle coefficient of sliding friction=1,increases in particle-wall coefficient of sliding friction resulted in a significant decrease in the final packing density of particles.This decrease was attributed to the propagation of force chains throughout the packing.The significant decrease in final packing density with particle-wall coefficient of sliding friction highlights the need to choose appropriate vessel materials to optimise packing of particles with a high particle-particle coefficient sliding friction.Conversely,for particles with minimal particle-particle friction,the particle-wall friction coefficient has no effect on the final packing density of particles-a potentially valuable finding for certain industrial applications.All simulations were run using the open-source DEM package LIGGGHTS on the University of Birmingham's high-performance computer:BlueBEAR.All the code files used within this paper can be found on Github:https://github.com/Jack-Grogan/DEM-Vibropacking-Wall-Effects.
出处 《Particuology》 SCIE EI CAS CSCD 2024年第8期211-225,共15页 颗粒学报(英文版)
作者简介 Corresponding author:Christopher R.K.Windows-Yule.E-mail address:c.r.windows-yule@bham.ac.uk(C.R.K.Windows-Yule).
  • 相关文献

参考文献3

二级参考文献30

  • 1An, X. Z? Li, C. X., Yang, R. Y? Zou, R. P., & Yu, A. B. (2009). Experimental study of the packing of mono-sized spheres subjected to one-dimensional vibration. Powder Technology, 196, 50-55.
  • 2An, X. Z., Yang, R. Y., Dong, K. J., & Yu, A. B. (2011). DEM study of crystallization of monosized spheres under mechanical vibrations. Computer Physics Communications, 182, 1989-1994.
  • 3An, X. Z? Yang, R. Y., Dong, K. J., Zou, R. P., & Yu, A. B. (2005). Micromechanical simulation and analysis of one-dimensional vibratory sphere packing. Physical Review Letters, 95, 205502-1-4.
  • 4An, X. Z., Yang, R. Y., Zou, R. P., & Yu, A. B. (2008). Effect of vibration condition and inter-particle frictions on the packing of uniform spheres. Powder Technology, 188(2), 102-109.
  • 5Ben-Naim, E., Knight, J. B., Nowak, E. R., Jaeger, H. M., & Nagel, S. R, (1998). Slow relaxation in granular compaction. Physica D, 123,380-385.
  • 6Bernal, J. D. (1959). A geometrical approach to the structure of liquids. Nature, 183, 141-147.
  • 7Bernal, J. D. (1964). The structure of liquids. Proceedings of the Royal Society of London Series A, 280, 299-322.
  • 8Berryman, J. G. (1983). Random close packing of hard spheres and disks. Physical Review A, 27,1053-1061.
  • 9Bideau, D., & Hansen, A. (1993). Disorder and granular media, random materials and process. Amsterdam: Elsevier Science Publishers.
  • 10Finney, J. L. (1970). Random packings and the structure of simple liquids 1, The geometry of random close packing. Proceedings of the Royal Society of London Series A, 319,479-493.

共引文献9

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部