期刊文献+

Bio-assembled MgO-coated tea waste biochar efficiently decontaminates phosphate from water and kitchen waste fermentation liquid 被引量:1

原文传递
导出
摘要 Crystal morphology of metal oxides in engineered metal-biochar composites governs the removal of phosphorus(P)from aqueous solutions.Up to our best knowledge,preparation of bio-assembled MgO-coated biochar and its application for the removal of P from solutions and kitchen waste fermentation liquids have not yet been studied.Therefore,in this study,a needle-like MgO particle coated tea waste biochar composite(MTC)was prepared through a novel biological assembly and template elimination process.The produced MTC was used as an adsorbent for removing P from a synthetic solution and real kitchen waste fermentation liquid.The maximum P sorption capacities of the MTC,deduced from the Langmuir model,were 58.80 mg g^(−1) from the solution at pH 7 and 192.8 mg g^(−1) from the fermentation liquid at pH 9.The increase of ionic strength(0-0.1 mol L^(−1) NaNO_(3))reduced P removal efficiency from 98.53%to 93.01%in the synthetic solution but had no significant impact on P removal from the fermentation liquid.Precipitation of MgHPO4 and Mg(H_(2)PO_(4))_(2)(76.5%),ligand exchange(18.0%),and electrostatic attraction(5.5%)were the potential mechanisms for P sorption from the synthetic solution,while struvite formation(57.6%)and ligand exchange(42.2%)governed the sorption of P from the kitchen waste fermentation liquid.Compared to previously reported MgO-biochar composites,MTC had a lower P sorption capacity in phosphate solution but a higher P sorption capacity in fermentation liquid.Therefore,the studied MTC could be used as an effective candidate for the removal of P from aqueous environments,and especially from the fermentation liquids.In the future,it will be necessary to systematically compare the performance of metal-biochar composites with different metal oxide crystal morphology for P removal from different types of wastewater.
出处 《Biochar》 SCIE CAS CSCD 2023年第1期391-408,共18页 生物炭(英文)
基金 The National Natural Science Foundation of China(32172679).
作者简介 Correspondence:Ronghua Li,rh.lee@nwsuaf.edu.cn;Correspondence:Sang Soo Lee,cons@yonsei.ac.kr;Correspondence:Sabry M.Shaheen,shaheen@uni-wuppertal.de。
  • 相关文献

参考文献8

二级参考文献14

共引文献112

同被引文献1

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部