期刊文献+

脉冲激光沉积法制备Ga掺杂ZnO薄膜结构、光学和电学性能研究

Structural,Optical and Electrical Properties of Ga-doped ZnO Films Prepared by Pulsed Laser Deposition
在线阅读 下载PDF
导出
摘要 为探究掺杂含量及薄膜厚度对Ga_(x)Zn_(1-x)O薄膜各性能的影响,利用脉冲激光沉积法在MgO衬底上制备一系列Ga_(x)Zn_(1-x)O薄膜。X射线衍射结果表明,所有薄膜均沿z轴择优生长,结晶质量和透光率随掺杂含量的增加而降低。Ga掺杂含量为3%的薄膜获得最佳电学性能。薄膜结晶质量随厚度增加而提高,在250 nm获得最低电阻率1.34×10^(-4)Ω·cm和最高迁移率26.48 cm^(2)/Vs。3%组分不同厚度的薄膜可见光范围内光透过率均高于80%。Ga_(x)Zn_(1-x)O薄膜是替代传统铟锡氧化物的良好候选材料。 In order to investigate the effects of doping content and film thickness on the properties of Ga_(x)Zn_(1-x)O thin films,a series of Ga_(x)Zn_(1-x)O thin films were prepared by pulsed laser deposition on MgO substrates.The X-ray diffraction results showed that all the films grew along the z-axis optimally,and the crystalline.The quality and transmittance decreased with the increasing of the doping content.The best electrical properties were obtained for the films with 3% Ga doping content.The crystalline quality of the films increased with the increase of thickness,and the lowest resistivity of 1.34 × 10^(-4)Ω·cm corresponding to the highest mobility of 26.48 cm^(2)/Vs were obtained at 250 nm.The optical transmittance in the visible range of the films with different thicknesses of the 3% component was higher than 80%.All the results indicate that Ga_(x)Zn_(1-x)O films are good candidates for replacing conventional indium tin oxides.
作者 周同 杨晓漫 刘亲壮 ZHOU Tong;YANG Xiaoman;LIU Qinzhuang(School of Physics and Electronic Information,Huaibei Normal University,235000,Huaibei,Anhui,China)
出处 《淮北师范大学学报(自然科学版)》 CAS 2024年第3期23-29,共7页 Journal of Huaibei Normal University:Natural Sciences
基金 国家自然科学基金项目(11974127) 安徽省自然科学基金项目(2008085MA19) 淮北师范大学研究生创新基金项目(CX2023039)。
关键词 脉冲激光沉积 Ga_(x)Zn_(1-x)O薄膜 电学性能 X射线衍射 pulsed laser deposition Ga_(x)Zn_(1-x)O films electrical properties X-ray diffraction
作者简介 周同(1998-),女,安徽濉溪人,硕士生,研究方向为功能薄膜材料;通信作者:刘亲壮(1981-),男,安徽萧县人,博士,教授,研究方向为功能薄膜材料。
  • 相关文献

参考文献1

二级参考文献34

  • 1侯清玉,董红英,马文,赵春旺.2013.物理学报,62,157101.
  • 2Liang H K, Yu S F, Yang H Y .2010, Appl. Phys. Lett. 96, 101116.
  • 3Lupan O, Pauporte T, Viana B, Tiginyanu I M, Ursaki V V, Cortes I ..2010,, ACS Appl. Mater. Inter. 2, 2083.
  • 4Zhang L C, Zhao F Z, Wang F F, Li Q S .2013, Chin. Phys. B 22 ,128502.
  • 5Heredia 6, Bojorge C, Casanova J, Canepa I4, Craievich A, Kellermann G .2014, Appl. Surf. Sci. 317, 19.
  • 6Gao L, Zhang Y, Zhang J M, Xu K W .2011, Appl. Surf. Sci. 257, 2498.
  • 7E1-Desoky M M, All M A, Afifi G, Imam H .2014, J. Mater. Sci.-Mater. El. 25 ,5071.
  • 8Shinde S S, Shinde P S, Oh Y W, Haranath D, Bhosale C H, l jpure K .2012, Appl. Surf. Sci. 258, 9969.
  • 9Miyake A, Kominami H, Tatsuoka H, Kuwabara H, Nakanishi Y, Hatanaka Y .2000, Jpn. J. Appl. Phys. S9, Ll186.
  • 10Kaul A R, Gorbenko O Y, Borer A N, Burova L I .2005, Superlattice Microst. 38, 272.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部