期刊文献+

基于深度归一化的任意交互物体检测方法研究

Arbitrary Interactive Object Detection Method Based on Deep Normalization
在线阅读 下载PDF
导出
摘要 交互物体的检测识别是实现人机交互的一项关键技术,针对人机交互过程中交互物体检测范围受限的问题,本文利用深度归一化提高深度图像质量,提出了一种基于图像分割的任意交互物体检测方法。该方法针对操作人员侧向和正向姿态,分别采用基于显著性检测的图像处理和人体姿态引导的区域生长算法分割目标区域,锚定目标物体边框实现物体检测。最后,进行了交互物体检测实验及不同深度区间位置测距和跟随实验。实验结果表明,所提出的物体检测方法能够实现任意交互物体检测,在交互物体检测方面具有广泛适用性;较小深度区间的归一化能够使物体位置误差变小,提高了物体检测距离精度及机器人跟随效果。 Detection and recognition of interactive objects is a key technology to realize human-computer interaction,and in order to solve the problem of limited types of interactive objects in the process of human-computer interaction,an arbitrary interactive object detection method was proposed based on image segmentation.Firstly,for the depth image,after filtering out the data outside the range of the original depth data,the min-max scale normalization method was used to improve the quality of the depth image.Secondly,the target area was segmented by using the image processing method based on saliency detection and the human pose-guided region growth algorithm for the operator's side-to-side camera and front-facing camera posture,respectively.Then,the pixel set of the target object obtained by the above segmentation was input into the image processing functions,and the minimum external rectangle of the area point set was obtained,and the rotating bounding box of the target object was anchored.Then,for the depth image,after filtering out the data outside the range of the original depth data,the min-max scale normalization method was used to improve the quality of the depth image.Finally,the detection experiments of arbitrary interactive objects and the ranging and following experiments of different depth intervals were carried out.Experimental results showed that the proposed object detection method had a lower detection cost and a higher degree of freedom in the detection category of interactive objects,which can realize the detection of arbitrary interactive objects,and had wide applicability in the detection of interactive objects.The normalization of the small depth interval can effectively improve the depth image quality,make the object position error smaller,and improve the accuracy of the object detection distance and the following effect of the robot in the human-computer interaction experiment.
作者 黄玲涛 孔紫静 杨帆 张红彦 HUANG Lingtao;KONG Zijing;YANG Fan;ZHANG Hongyan(School of Mechanical and Aerospace Engineering,Jilin University,Changchun 130022,China)
出处 《农业机械学报》 EI CAS CSCD 北大核心 2024年第8期428-436,共9页 Transactions of the Chinese Society for Agricultural Machinery
基金 吉林省重点研发计划项目(20200401130GX) 国家自然科学基金项目(51575219)。
关键词 目标物体检测 深度归一化 图像分割 人机交互 target object detection depth normalization image segmentation human-computer interaction
作者简介 黄玲涛(1979-),男,副教授,主要从事机器人控制和主从控制及力反馈技术研究,E-mail:hlt@jlu.edu.cn;通信作者:张红彦(1978-),女,副教授,主要从事机器人技术和机器视觉处理研究,E-mail:Zhanghy@jlu.edu.cn。
  • 相关文献

参考文献13

二级参考文献68

  • 1宋志娜,眭海刚,李永成.高分辨率可见光遥感图像舰船目标检测综述[J].武汉大学学报(信息科学版),2021,46(11):1703-1715. 被引量:14
  • 2任栋宇,李晓娟,林涛,熊明明,许贞辉,崔高建.基于Kinect v2传感器的果树枝干三维重建方法[J].农业机械学报,2022,53(S02):197-203. 被引量:8
  • 3赵岩,汪敬媛,陈贺新,刘静,王珂玮.基于深度图像和半像素的虚拟视点绘制[J].吉林大学学报(工学版),2013,43(S1):256-259. 被引量:4
  • 4Benavidez P,Jamshidi M.Mobile robot navigation and target tracking system[C]//6th International Conference on System of Systems Engineering,New Mexico,IEEE,2011:299-304.
  • 5Izadi S,Kim D,Hilliges O,et al.KinceFusion:real-time 3Dreconstruction and interaction using a moving depth camera[C]//Symposium on User Interface Software and Technology,Santa Barbar,ACM,2011:559-568.
  • 6Zhao Yan,Wang Jing-yuan,Chen He-xin,et al.Virtual view rendering based on depth image and half pixel precision[J].Journal of Jilin University(Engineering and Technology Edition),2013,43(Sup.):256-259.
  • 7He K,Sun J,Tang X.Guided image filtering[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2013,35(6):1397-1409.
  • 8Liu Jin-yi,Gong Xiao-jin,Liu Ji-lin.Guided inpainting and filtering for Kinect depth maps[C]//International Conference on Pattern Recognition,Tsukuba,IEEE,2012:2055-2058.
  • 9Liu S,Wang Y,Wang J,et al.Kinect depth restoration via energy minimization with TV21regularization[C]//International Conference on Image Processing,Melbouene,IEEE,2013:724-727.
  • 10Yang Na-eun,Kim Yong-gou,Park Rae-hong.Depth hole filling using the depth distribution of neighboring regions of depth holes in the Kinect sensor[C]//Signal Processing,Communication and Computing,Hong Kong,IEEE,2010:658-661.

共引文献297

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部