期刊文献+

基于数学规划模型的生产企业原材料的订购与运输

Ordering and Transportation of Raw Materials for Production Enterprises Based on Mathematical Planning Model
在线阅读 下载PDF
导出
摘要 企业需根据产能确定原材料的供货量、每周的订购量及其间损耗的转运量,可利用TOPSIS优略解距离法计算指标权重综合得分,排序确定最重要的供应商。建立整数规划模型并用程序模拟迭代求解,制定未来24周每周最经济的原材料订购方案与损耗最少的转运方案。建立多目标规划模型,制定尽量多地采购A类和尽量少地采购C类原材料来减少转运与仓储成本及转运损耗率的订购方案及转运方案。计算24周平均每立方米原材料所需单位成本,可知订购方案较为经济,所得结果合理有效。将数学规划模型应用于企业制定订购转运方案中,可对各类订购问题提供指导。 Enterprises need to determine the supply quantity of raw materials,the weekly order quantity and the transfer volume of the loss between them according to the production capacity.TOPSIS optimal solution distance method can be used to calculate the comprehensive score of the index weight and sort the most important suppliers.The study establishes integer programming model,simulate the iterative solution with the program,and develops the most economical raw material ordering plan and the transfer plan with the least loss every week in the next 24 weeks;establishes a multi-objective planning model,and formulates an ordering scheme and a transfer scheme to purchase Class A and Class C raw materials as much as possible to reduce the transfer and storage costs and the transfer loss rate.Then the study calculates the required 24 weeks average unit cost per cubic meter of raw materials.It is found that the ordering scheme is more economical,and the result is reasonable and effective.The application of mathematical planning model to order transfer scheme can provide guidance to various ordering problems.
作者 李佳荣 梅华平 罗丹言 陈清江 Li Jiarong;Mei Huaping;Luo Danyan;Chen Qingjiang(Xi’an University of Architecture and Technology,Xi’an 710055,China)
出处 《黑龙江科学》 2024年第16期77-81,共5页 Heilongjiang Science
关键词 TOPSIS优略解距离法 0-1规划模型 整数规划 多目标规划 TOPSIS optimal solution distance method 0-1 planning model Integer programming Multi-objective programming
作者简介 陈清江(1966-),男,博士,教授。研究方向:小波分析与图像处理。
  • 相关文献

参考文献1

二级参考文献9

  • 1潘皤.基于变邻域蚁群算法的应急物资公平配送路径优化[D].上海:上海交通大学(硕士学位论文),2013.
  • 2Tzeng G H, Cheng H J, Huang T D. Multi-objective optimal planning for designing relief delivery systems[J]. Transportation Research Part, 2007,43(6):673-686.
  • 3Barbarosoglu G, Ozdamar L, Cevik A. A two-stage stochastic programming framework for transportation planning in disaster response[J]. Journal of the Operational Research Society, 2004,55(1):43-53.
  • 4Zhan S, Liu N, Ye Y. Coordinating efficiency and equity in disaster relief logistics via information updates[J]. International Journal of Systems Science, 2014,45(8):1607-1621.
  • 5Kahneman, D, Tversky A. Choice, Values, and Frames[M]. New York: Cambridge University Press, 2000.
  • 6Huseyin Onur Mete, Zelda B. Zabinsky. Stochastic optimization of medical supply location and distribution in disaster manage- ment[J]. Int. J. Production Economics, 2010,126(1):76-84.
  • 7曾敏刚,崔增收,李双.一种多受灾点的灾害应急资源分配模型[J].工业工程,2010,13(1):85-89. 被引量:16
  • 8张玲,王晶,黄钧.不确定需求下应急资源配置的鲁棒优化方法[J].系统科学与数学,2010,30(10):1283-1292. 被引量:29
  • 9刘春林,何建敏,盛昭瀚.多出救点应急系统最优方案的选取[J].管理工程学报,2000,14(1):13-15. 被引量:56

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部