期刊文献+

原位分析在电池材料失效分析中的应用进展

Application progress in in-situ characterization in failure analysis of battery material
在线阅读 下载PDF
导出
摘要 原位分析技术基于实时性和现场性的特点,在揭示电池材料界面演化和失效机制方面越来越重要,可为从根本上提升电池稳定性和安全性提供理论基础。从关键电极材料表界面结构演化、形貌变化和产气情况等方面,系统总结针对电池材料失效分析的常用原位分析技术,如原位XRD、原位X射线显微技术及原位原子力显微镜等。重点阐述各类分析技术的原理,并根据其在失效分析领域的实际应用情况,讨论技术优势及局限性,对改善方向进行展望。 Based on real-time and on-site characteristics,the in-situ characterization technique is becoming more and more important in revealing the interface evolution and failure mechanism of battery materials,providing a theoretical basis for fundamentally improving the stability and safety of batteries.In-situ characterization techniques for battery material failure analysis,such as in-situ XRD,in-situ X-ray microscopy and in-situ atomic force microscopy and so on,are systematically summarized from three aspects of interface structure evolution,morphology change and gas production of key electrode materials.The principles of various characterization technologies are emphasized,and the advantages and limitations of the technologies are discussed according to their practical applications in the field of failure analysis,the improvement direction are prospected.
作者 贾雪莹 汪伟伟 刘兴亮 李鹏飞 JIA Xueying;WANG Weiwei;LIU Xingliang;LI Pengfei(Hefei Gotion High-Tech Power Energy Co.,Ltd.,Hefei,Anhui 230012,China)
出处 《电池》 CAS 北大核心 2024年第4期564-568,共5页 Battery Bimonthly
关键词 锂离子电池 原位分析 失效分析 电极材料 界面反应 Li-ion battery in-situ characterization failure analysis electrode material film reaction
作者简介 通信作者:贾雪莹(1992-),女,河南人,合肥国轩高科动力能源有限公司工程师,博士,研究方向:锂离子电池正极材料。
  • 相关文献

参考文献9

二级参考文献96

  • 1叶春堂.我国的热中子散射工作现况和展望[J].核技术,1993,16(8):505-510. 被引量:5
  • 2Baddour-Hadjean R, Pereira-Ramos J P. Raman microspectrometry applied to the study of electrode mate- rials for lithium batteries [ J]. Chem Rev, 2010, 110 (3) :1278-1319.
  • 3Tuinstra F, Koenig J L. Raman spectrum of graphite [J]. J Chem Phys,1970,53(3):1126.
  • 4Mabuchi A, Tokumitsu K, Fujimoto H, et al. Chargedischarge characteristics of the mesocarbon microbeads heat-treated at different temperatures [ J ]. J Electrochem Soc, 1995,142(4 ) : 1041-1046.
  • 5Inaba M, Yoshida H, Ogumi Z. ln-situ Raman study of electrochemical lithium insertion into mesocarbon microbeads heat-treated at various temperature [ J ]. J Electrochem Soc, 1996,143 ( 8 ) :2572-2578.
  • 6Julien C M, Massot M. Lattice vibrations of materials for lithium rechargeable batteries I. Lithium manganese oxide spinel[ J ]. Mater Sci Eng B, 2003,97 ( 3 ) : 217-230.
  • 7Hwang S J, Park D H, Choy J H, et al. Effect of chromium substitution on the lattice vibration of spinel lithium manganate:A new interpretation of the Raman spectrum of LiMn204 [ J]. J Phys Chem B,200d,108(34) : 12713-12717.
  • 8Li G H, Ikuta H, Uchida T, et al. The spinel phases LiM(y) nn(2-y) 0(4) ( M = Co, Cr, Ni) as the cathode for rechargeable lithium batteries [ J ]. J Electrochem Soc, 1996,143 ( 1 ) : 178-182.
  • 9Song D, Ikuta H, Uchida T, et al. The spinel phases LiAly Mn2-y O4 ( y = 0, 1/12,1/9,1/6,1/3 ) and Li ( A1, M) (1/6) Mn11/6 O4 ( M = Cr, Co) as the cathode for rechargeable lithium batteries [ J ]. Solid State Ionics, 1999,117 (1/2) : 151-156.
  • 10Wei Y J,Kim K B,Chen G. Evolution of the local structure and electrochemical properties of spinel LiNix Mn2-x O4 (0 < = x < = 0. 5 ) [ J ]. Electrochim Acta, 2006,51 (16) :3365-3373.

共引文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部