期刊文献+

Hybrid Gaussian Network Intrusion Detection Method Based on CGAN and E-GraphSAGE

在线阅读 下载PDF
导出
摘要 The rapid development of the Internet of Things(IoT)and modern information technology has led to the emergence of new types of cyber-attacks.It poses a great potential danger to network security.Consequently,protecting against network attacks has become a pressing issue that requires urgent attention.It is crucial to find practical solutions to combat such malicious behavior.A network intrusion detection(NID)method,known as GMCE-GraphSAGE,was proposed to meet the detection demands of the current intricate network environment.Traffic data is mapped into gaussian distribution,which helps to ensure that subsequent models can effectively learn the features of traffic samples.The conditional generative adversarial network(CGAN)can generate attack samples based on specified labels to create balanced traffic datasets.In addition,we constructed a communication interaction graph based on the connection patterns of traffic nodes.The E-GraphSAGE is designed to capture both the topology and edge features of the traffic graph.From it,global behavioral information is combined with traffic features,providing a solid foundation for classifying and detecting.Experiments on the UNSW-NB15 dataset demonstrate the great detection advantage of the proposed method.Its binary and multi-classification F1-score can achieve 99.36%and 89.29%,respectively.The GMCE-GraphSAGE effectively improves the detection rate of minority class samples in the NID task.
出处 《Instrumentation》 2024年第2期24-35,共12页 仪器仪表学报(英文版)
基金 funded by the National Natural Science Foundation of China(grant number.62171228) National Key Research and Development Program of China(grant number.2021YFE0105500).
作者简介 Corresponding author:Hongyan Xing,email:xinghy@nuist.edu.cn。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部