期刊文献+

基于光谱技术和BP神经网络的苹果汁中柠檬黄检测与分析

Detection and Analysis of Lemon Yellow in Apple Juice Based on Spectroscopic Technique and BP Neural Network
在线阅读 下载PDF
导出
摘要 合成色素的大量使用给食品安全和人们的身体健康带来了严重的危害,因此,建立快速有效的合成色素检测方法具有重要意义。在文章中,提出了一种基于紫外可见光谱和反向传播(BackPropagation,BP)神经网络快速检测苹果汁中柠檬黄的方法。首先,检测了苹果汁中不同浓度柠檬黄的紫外可见光谱;然后,采用Savitzky-Golay(S-G)平滑消除了光谱数据的噪声;最后,建立了基于BP神经网络的预测模型。同时,采用粒子群优化(Particle SwarmOptimization,PSO)算法对BP神经网络模型进行了优化与分析。结果表明,采用紫外可见光谱结合PSO-BP神经网络模型方法有效实现了苹果汁中柠檬黄的快速检测。文中研究为食品中合成色素的检测提供了一种简单有效的方法。 The extensive use of synthetic pigments has posed serious hazards to food safety and human health.Therefore,it is important to establish a rapid and effective detection method for synthetic pigments.In this pa-per,a method for rapid detection of lemon yellow in apple juice based on ultraviolet-visible spectroscopy and back propagation(BP)neural network is proposed.First,the ultraviolet-visible spectra of different concentra-tions of lemon yellow in apple juice are detected.Then,the noise of the spectral data is eliminated using Savitz-ky-Golay(S-G)smoothing.Finally,a prediction model based on the BP neural network model is developed.Meanwhile,the BP neural network model is optimized and analyzed using the particle swarm optimization(PSO)algorithm.The results show that the UV-visible spectroscopy combined with PSO-BP neural network model method effectively realizes the rapid detection of lemon yellow in apple juice.This study provides a sim-ple and effective method for the detection of synthetic pigments in food.
作者 孟德龙 顾慈勇 刘振鲁 MENG De-long;GU Ci-yong;LIU Zhen-lu(College of Physics,Nanjing University of Aeronautics and Astronautics,Nanjing 210016;College of Physics and Electronic Information Engineering,Guilin University of Technology,Guilin 541004)
出处 《电光系统》 2024年第2期10-13,共4页 Electronic and Electro-optical Systems
关键词 紫外可见光谱 BP神经网络 粒子群优化 食品安全 Ultraviolet-visible Spectroscopy BP Neural Network Particle Swarm Optimization Food Safety
作者简介 孟德龙(1994-),男,博士研究生。
  • 相关文献

参考文献3

二级参考文献31

  • 1李方方,赵英凯,贾玉莹.基于粒子群优化算法的神经网络在油品质量预测中的应用[J].计算机应用,2006,26(5):1122-1124. 被引量:12
  • 2YUAN L, HE Y, HUANG J, et al. A new neural-net- work-based fault diagnosis approach for analog circuits by using kurtosis and entropy as a preprocessor [ J ] Instru- mentation and Measurement, IEEE Transactions on, 2010, 59(3) : 586 -595.
  • 3WANG C J,ZUO X H. Building engineering cost evalua- tion forecasting model based on BP neural network. Jour- nal of Shanxi University of Finance and Economics ,2009, 14(11) :327 -330.
  • 4DINGS F, XU X Z, ZHU H. Studies on optimization al-gorithms for some artificial neural networks based on ge- netic algorithm(GA) [J]. Journal of Computers. 2011,6 (5) : 939 - 946.
  • 5YANG L, C. W. DAWSON, M. R. BROWN, M. GELL. Neural network and GA approaches for dwelling fire oc- currence prediction [ J ]. Knowledge-Based Systems, 2006,19(2) :213 -219.
  • 6LIU Z J, LIU A X, WANG C Y, et al. Evolving neural network using real coded genetic algorithm(GA)for mul- tispectral image classification [ J ]. Future Generation Computer Systems, 2004,20 (2) : 1 119 - 1 129.
  • 7Y SHI, R C EBERHART. A modified particle swarm optimizer [ J ]. In Proc. IEEE World Congr. Comput. Intell, 1998:69 - 73.
  • 8SHI Y, R C EBERHART. Empirical study of particle swarm optimization [ J]. Proc. IEEE Congr. Evol. Comput. , 1999 : 1 945 - 1 950.
  • 9HONG Y, LIAO H B, JIANG Y Z. Construction engi- neering cost evaluation model and application based on RS-IPSO-BP neural network [ J]. Journal of Computers, 2014,9(4): 1 020 - 1 025.
  • 10王凡,贺兴时,王燕,杨松铭.基于CS算法的Markov模型及收敛性分析[J].计算机工程,2012,38(11):180-182. 被引量:55

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部