期刊文献+

基于加权组合算法的点云孔洞修补 被引量:1

Point cloud hole repair based on weighted combination algorithm
在线阅读 下载PDF
导出
摘要 为了对无人机航测数据中的点云孔洞进行修补,将最小二乘支持向量机算法LS-SVM和遗传算法GA优化的反向传播神经网络算法BP进行线性组合,构建一种加权组合模型,用于散乱点云数据中的孔洞修补。通过两种修补方法的误差进行两者的加权组合,建立出与两种修补方法误差相关的加权组合模型,并将加权组合模型的修补结果与单一使用最小二乘支持向量机、遗传算法优化的BP神经网络两种修补方法的修补结果进行残差和内外符合精度的比较与分析。结果表明:采用加权组合模型得到的点云修补结果内外符合精度较高,且具有更强的稳定性,为无人机获取的点云数据提供了一种有效的孔洞修补方法。 In order to repair point cloud holes in UAV aerial survey data,LS-SVM algorithm and BP optimized by GA(BP-GA)are linearly combined to construct a weighted combination model for hole repair in scattered point cloud data.By combining the errors of the two methods,a weighted combination model related to the errors of two repair methods is established,and it will repair the point cloud holes.The residual and internal and external accuracy of the repair results of weighted combination model,LS-SVM and BP-GA are analyzed.Compared with the results of the two single repair methods,the point cloud repair results obtained by the weighted combination model have higher internal and external coincidence accuracy and higher stability,which provides an effective hole repair method for the point cloud data obtained by UAV.
作者 吕富强 唐诗华 何广焕 刘坤之 李灏杨 LYU Fuqiang;TANG Shihua;HE Guanghuan;LIU Kunzhi;LI Haoyang(College of Geomatics and Geoinformation,Guilin University of Technology,Guilin 541006,China;Guangxi Key Laboratory of Spatial Information and Geomatics,Guilin University of Technology,Guilin 541006,China)
出处 《桂林理工大学学报》 CAS 北大核心 2024年第2期288-293,共6页 Journal of Guilin University of Technology
基金 国家自然科学基金项目(41864002) 广西自然科学基金项目(2018GXNSFAA281279)。
关键词 点云孔洞 最小二乘支持向量机 反向传播神经网络算法 加权组合 孔洞修补 point cloud hole LS-SVM BP neural network weighted combination hole repair
作者简介 吕富强(1998—),男,硕士,研究方向:无人机数据处理与应用,865129882@qq.com。;通讯作者:唐诗华,博士,教授,919966068@qq.com。
  • 相关文献

参考文献14

二级参考文献133

共引文献241

同被引文献16

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部